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Abstract

Inductive Logic Programming (ILP) is a form of Machine Learning. The goal of ILP is to in-

duce hypotheses, as logic programs, that generalise training examples. ILP is characterised by a

high expressivity, generalisation ability and interpretability. Meta-Interpretive Learning (MIL)

is a state-of-the-art sub-field of ILP. However, current MIL approaches have limited efficiency:

the sample and learning complexity respectively are polynomial and exponential in the number

of clauses. My thesis is that improvements over the sample and learning complexity can be

achieved in MIL through instance and hypothesis space revision. Specifically, we investigate

1) methods that revise the instance space, 2) methods that revise the hypothesis space and 3)

methods that revise both the instance and the hypothesis spaces for achieving more efficient

MIL.

First, we introduce a method for building training sets with active learning in Bayesian MIL.

Instances are selected maximising the entropy. We demonstrate this method can reduce the

sample complexity and supports efficient learning of agent strategies. Second, we introduce a

new method for revising the MIL hypothesis space with predicate invention. Our method gen-

erates predicates bottom-up from the background knowledge related to the training examples.

We demonstrate this method is complete and can reduce the learning and sample complexity.

Finally, we introduce a new MIL system called MIGO for learning optimal two-player game

strategies. MIGO learns from playing: its training sets are built from the sequence of actions

it chooses. Moreover, MIGO revises its hypothesis space with Dependent Learning: it first

solves simpler tasks and can reuse any learned solution for solving more complex tasks. We

demonstrate MIGO significantly outperforms both classical and deep reinforcement learning.

The methods presented in this thesis open exciting perspectives for efficiently learning theories

with MIL in a wide range of applications including robotics, modelling of agent strategies and

game playing.
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Chapter 1

Introduction

1.1 Motivation and Objectives

1.1.1 Motivation

Induction is the process of inferring general rules from specific observations. Induction is the

primary task of machine learning on which we will focus in this thesis. However, induction is

inherently difficult due to large search spaces [Rendell, 1985].

ILP [Muggleton, 1991] is a form of Machine Learning. An ILP learner takes as input examples

and background knowledge and outputs an hypothesis which, together with the background

knowledge, explains and generalises the examples. In ILP, the examples, the background knowl-

edge and learned hypotheses are represented as logic programs. ILP systems have several bene-

fits compared to other forms of Machine Learning [Cropper et al., 2020a]. First, the logical rep-

resentation is highly expressive which allows to learn complex hypotheses involving recursions,

first-order and higher-order logic. ILP systems also have the ability to perform high-level rea-

soning. Expressivity together with high-level reasoning facilitate high generalisation. Second,

ILP systems benefit from a strong inductive bias and can easily make use of prior knowledge.

They can reuse and recompose knowledge to build new knowledge which promotes data effi-

ciency. Moreover, since learned hypotheses are represented in the same form as the background

1



2 Chapter 1. Introduction

knowledge, they can easily be explicitly added to the background knowledge which provides a

natural support for transfer learning and lifelong learning. Finally, the logical representation

is humanly comprehensible: learned models have the potential to be read and understood by

humans which is crucial for explainable AI. We are interested in this thesis in inducing pro-

grams from data with ILP. However, the search for programs is a hard combinatorial problem:

the number of programs in any non-trivial programming language grows exponentially with

program size.

Meta-Interpretive Learning (MIL) [Muggleton et al., 2014; Muggleton et al., 2015] is a state-of-

the-art ILP framework. As a form of ILP, a MIL learner takes as input a set of examples and

background knowledge represented as logic programs. A distinctive feature of MIL is the use

of meta-rules as part of the background knowledge. Meta-rules are higher-order clauses which

act as program templates and specify the form of learned programs allowed in the hypothesis

space. The major strengths of MIL is that it supports predicate invention, learning of recursive

programs and learning of higher-order programs. However, current MIL systems have limited

efficiency. We will investigate in this thesis improvements over MIL efficiency. We measure

efficiency of learning systems along two axes: the sample complexity evaluates the number of

examples required to converge toward accurate hypotheses while the learning complexity refers

to the computational resources required to converge toward accurate hypotheses. Current MIL

approaches have restricted efficiency: they have a sample complexity polynomial in the size

of learned programs and a learning complexity exponential in the size of learned programs

[Muggleton et al., 2015], where the size of a program is measured as its number of clauses.

We introduce in this thesis revision methods for more efficient MIL. First, we investigate meth-

ods that revise the instance space. The instance space is the set of items over which hypotheses

are defined. The training set is the set of examples presented to the learner. Training examples

are labelled instances sampled from the instance space. We investigate methods to guide the

selection of informative examples. Second, we investigate methods to revise the hypothesis

space. The hypothesis space is the set of all hypotheses that are constructable and may be

output by the learner. The hypothesis space is defined by the hypothesis language. We investi-

gate methods which revise the hypothesis space to guide the search for consistent hypotheses.
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Third, we investigate methods that revise both the instance and the hypothesis space to achieve

more efficient MIL.

We restrict the scope of this thesis to monotonic learning within the Herbrand semantics and

learn hypotheses which are definite programs. In Chapter 6, we extend the class of learnable

programs and learn programs with stratified negation, in the monotonic learning setting.

1.1.2 Thesis Statement

We claim that more efficient MIL can be achieved. Specifically, my thesis is that improvements

over the sample complexity and the learning complexity can be achieved in MIL through:

Subthesis S.1 methods that revise the instance space,

Subthesis S.2 methods that revise the hypothesis space and

Subthesis S.3 methods that revise both the instance space and the hypothesis space.

To support this claim, we investigate whether at least one such method exists in each of the

cases above.

1.1.3 Revising the instance space

Figure 1.1: Learning a chess pattern: board example of a situation in which the white king
protects its rook. It is black-to-move.

An optimal strategy in the chess endgame KRK (King-and-Rook versus King) is to successively

restrict the area available to the opponent’s black king using the white rook [Bratko, 1978].
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Maintenance of white rook safety must be ensured throughout the endgame and this can be

achieved using the white king. This concept of rook protection is a crucial feature of a winning

strategy in the KRK endgame. Figure 1.1 represents an example of a situation in which the

white king protects its rook from the black king. Suppose a learner aims to learn the concept of

rook protection represented by the predicate rp/1. Suppose also the learner is given as training

set a positive example, which is the following atom representing the situation in Figure 1.1:

rp([c(5, b,white, king), c(6, c,white, rook), c(7, d, black, king)])

H1

rp(A):-rp_1(A,B),rp_2(A,B). Board A contains two
white pieces at distance 1

of each other.
rp_1(A,B):-piece(A,B),white(B).

rp_2(A,B):-rp_1(A,C),distance1(C,B).

H2

rp(A):-piece(A,B),rp_1(A,B). Board A contains a piece at
distance 1 of a black piece.rp_1(A,B):-piece(A,C),rp_2(C,B).

rp_2(A,B):-distance1(A,B),black(B).

H3

rp(A):-piece(A,B),rp_1(A,B).
Board A contains a piece at
distance 1 of a white king.

rp_1(A,B):-piece(A,C),rp_2(C,B).
rp_2(A,B):-distance1(A,B),rp_3(B).

rp_3(A):-white(A),king(A).

H4

rp(A):-rp_1(A,B),rp_2(A,B).
Board A contains a white king.rp_1(A,B):-piece(A,B),white(B).

rp_2(A,B):-piece(A,B),king(B).

Table 1.1: Learning a chess pattern: competing hypotheses

(a) Query 1 (b) Query 2 (c) Query 3

Figure 1.2: Learning a chess pattern: candidate queries. It is black-to-move for each of them.

Given the background predicates piece/2, white/1, black/1, rook/1, king/1 and distance1/2,

the learner could formulate several hypotheses which generalise this example. Among them,

there are the competing hypotheses H1, H2, H3 and H4. These hypotheses are represented
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in Table 1.1 as logic programs along with an English description. All these hypotheses are

consistent with the training set and the learner should attempt to discriminate between them.

We additionally assume the learner is provided with the set of additional unlabelled instances

represented in Figure 1.2 and that the learner is allowed to request the label of any of them

to an oracle. Once queried, an instance is labelled and becomes an example which is added to

the training set. One can notice Query 1 is consistent with one hypothesis, Query 2 with all

four hypotheses and Query 3 with two hypotheses as shown in Table 1.2. Then, all hypotheses

having equal prior probability, the instance whose classification should be requested is Query 3.

Query 3 is the most informative instance because regardless of its classification, the knowledge

of its label will allow the learner to reject exactly half of the current hypotheses. Conversely,

Query 1 and Query 2 have a smaller expected proportion of hypotheses rejected. More generally,

the most informative instances are those that can be classified the least reliably by the current

competing hypotheses. The selection of these informative instances results in a faster reduction

of the set of consistent hypotheses. Therefore, when following this query strategy, the learner

needs to request fewer labels before converging, which is worthwhile when labelling instances

has an associated cost.

Query 1 Query 2 Query 3
H1 7 X 7

H2 7 X X
H3 7 X 7

H4 X X X

Table 1.2: Consistency of competing hypotheses with respect to the candidate queries

In Chapter 4, we present an instance selection method for revising the instance space based on

this idea. We demonstrate this method helps to converge faster toward accurate hypotheses

and to reduce the overall cost of labelling instances. These results support Subthesis S.1.

1.1.4 Revising the hypothesis space

An accurate hypothesis for learning the concept of rook protection is represented in Table 1.3.

This hypothesis includes various invented predicates representing sub-concepts. For instance,
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rp_1/2 defines the existence of a white king in a board. The predicates involved in this

hypothesis can be divided between surface and substrate as in Table 1.3. The substrate is a set of

lower level invented predicates and the surface is a set of higher level predicates built from these

substrate predicates. Substrate predicates are generated in a first step. Their generation makes

available a number of intermediate concepts reusable during the construction of the surface

hypothesis. The surface hypothesis has fewer clauses owing to the use of substrate predicates

and therefore it is easier to learn. To that extent the generation of substrate predicates changes

the learning bias, thus revises the hypothesis space for more efficient learning.

In Chapter 5, we introduce a method for partially delegating the construction of invented

predicates. The substrate invented predicates are generated in a first step from the background

knowledge by a bottom-up learner. These invented predicates are added to the background

knowledge. The surface hypothesis is subsequently built by a top-down learner which can reuse

these invented predicates. We theoretically demonstrate our bottom-up predicate construction

method is complete. We also demonstrate it reduces the number of clauses to be learned in the

surface hypothesis, which can reduce the sample complexity and improve learning performance.

These results support Subthesis S.2.

1.1.5 Revising both the instance space and the hypothesis space

An optimal strategy for winning in two moves at Noughts-and-Crosses is to lead double attacks

when possible. An example of such double attack is represented in Figure 1.3a. Player O

executes a move from board A to board B which creates the two threats represented with

the green dotted lines. This results in a forced win for O. More generally, the logic program

Surface rp(A):-rp_1(A,B),rp_3(A,B).

Substrate

rp_1(A,B):-rp_2(A,B),white(B).
rp_2(A,B):-piece(A,B),king(B).

rp_3(A,B):-rp_4(A,C),distance1(C,B).
rp_4(A,B):-piece(A,B),rook(B).

Table 1.3: Learning a chess pattern: Target Hypothesis
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(a) Example of optimal move: O creates a
double attack

win_2(A,B):-win_2_1_1(A,B),not(win_2_1_1(B,C)).
win_2_1_1(A,B):-move(A,B),not(win_1(B,C)).

win_1(A,B):- move(A,B),won(B).
(b) Logic program describing an optimal strategy for

Noughts-and-Crosses

Figure 1.3: Optimal Strategy for winning in two moves at Noughts-and-Crosses: O makes a
move such that X cannot immediately win nor make a move that blocks O.

represented in Figure 1.3b describes an optimal strategy for winning in two moves at Noughts-

and-Crosses. A, B and C are variables which represent state descriptions and encode the

current board together with the current player. This strategy states that a move by the current

player from state A to state B is a winning move if the opponent cannot immediately win in

one move from state B and if the opponent cannot make a move from state B to state C to

prevent an immediate win in one move by the current player. This strategy has a hierarchical

structure and is decomposed in multiple predicates. For instance, it uses the predicate win_1/2

which represents a strategy for winning in one move. In this way, the learner decomposes a

complex problem, such as winning in two moves, into related sub-problems, such as winning

in one move. It solves these related sub-problems and saves any solution found. Then, it can

reuse any of the simpler concepts learned to learn more efficiently the most complex ones. The

ability to solve related problems and remember their solutions shapes the hypothesis space,

thus guides the search and facilitates learning.

Moreover, the learner needs to navigate through the large space of possible games to obtain

examples. When learning game strategies, the learner can learn from playing to obtain infor-

mative examples. In this case, it executes its current strategy: the current strategy guides the

choice of examples and is used to build training sets. In other words, the learner constantly is

testing its current strategy in order to improve it.
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In Chapter 6, we introduce a new learning system called MIGO for learning optimal two-player

game strategies. MIGO orders and solves tasks by increasing complexity. The complexity

is measured as the number of moves until completion of the game. Any solution learned is

saved in the background knowledge such that it can be reused for solving increasingly more

complex tasks. Thus, the hypothesis space is revised as more tasks are solved. Moreover,

MIGO builds training sets from playing. The examples are generated from the execution of

the current strategy and are the result of the actions chosen by MIGO. MIGO learns optimal

strategies for evaluable games in which Minimax Regret can be efficiently evaluated. This

allows to have a measure for evaluating learning performance. We experimentally demonstrate

MIGO significantly outperforms both standard and deep reinforcement learning in terms of

Cumulative Minimax Regret when learning evaluable games such as Noughts-and-Crosses. In

addition, MIGO can achieve significant transfer learning between different domains. Finally,

learned strategies are shown to be relatively easy to comprehend. Our results support Subthesis

S.3.

1.2 Contributions

To support our thesis, we make contributions in theory, methods, implementation and experi-

mentation of MIL. Specifically, our contributions are:

Subthesis S.1

(a) We introduce a novel framework, Active Bayesian MIL, for learning efficient agent

strategies with reduced cost of experimentation. Active Bayesian MIL extends

Bayesian MIL with an automated experiment selection based on active learning

(Section 4.3)

(b) We theoretically evaluate the expected gain in entropy of Active Bayesian MIL com-

pared to Passive Bayesian MIL (Section 4.4)

(c) We provide and describe an implementation of our framework Active Bayesian MIL

(Section 4.5)
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(d) We experimentally demonstrate over two domains that Active Bayesian MIL con-

verges faster toward efficient agent strategies compared to Passive Bayesian MIL

(Section 4.6)

Subthesis S.2

(a) We introduce a new bottom-up method for performing automated predicate inven-

tion in MIL (Section 5.3)

(b) We formalise the definition of an equivalence relation for predicates which is used to

prune redundant predicates (Section 5.3)

(c) We provide a theoretical proof of the completeness of our bottom-up predicate in-

vention method (Section 5.4)

(d) We derive a theoretical bound over the number of predicate symbols introduced by

our predicate invention method (Section 5.4)

(e) We provide and describe an implementation of our method (Section 5.5)

(f) We experimentally demonstrate over two domains that our method can improve

learning performance (Section 5.6)

Subthesis S.3

(a) We introduce a new learning system called MIGO for learning optimal two-player

game strategies for evaluable games (Section 6.3)

(b) We provide and describe an implementation of MIGO (Section 6.4)

(c) We experimentally demonstrate over two games thatMIGO converges faster in terms

of Cumulative Minimax Regret than both standard and deep reinforcement learning

(Section 6.5)

(d) We experimentally demonstrate that strategies learned by MIGO are transferable

across different domains (Section 6.5)

(e) We experimentally demonstrate that rules learned by MIGO provide some form of

comprehensibility (Section 6.5).
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In the following, our experimental results will be presented including both the experimental

hypotheses tested and the corresponding null hypotheses. We believe both form a crucial part

of the experimental design.

1.3 Publications

Parts of the contributions presented in this thesis have been reviewed and published in the

following venues:

Parts of Chapter 4 appear in [Hocquette and Muggleton, 2018]. The initial idea of this

work, the theoretical framework and the outline of the theoretical analysis are due to the

second author Stephen Muggleton. The author of this thesis contributed to (1) formalising

the theoretical analysis, (2) conducting the experiments and (3) writing the theoretical

analysis, the implementation, the experimental sections and the conclusion.

Parts of Chapter 5 appear in [Hocquette and Muggleton, 2020]. The second author

Stephen Muggleton contributed to the initial idea and the theoretical framework. The

author of this thesis contributed to (1) the theoretical analysis, in particular proving the

completeness of this approach and demonstrating a theoretical bound over the number

of predicate symbols introduced, (2) the implementation, (3) conducting the experiments

and (4) writing most of the paper.

Parts of Chapter 6 appear in [Muggleton and Hocquette, 2019]. The initial idea of this

work and the outline of the theoretical framework are due to the first author Stephen Mug-

gleton. The author of this thesis contributed to (1) formalising the theoretical framework,

(2) the implementation, (3) conducting the experiments and (4) writing the theoretical

framework, the implementation and experimental sections. Parts of Chapter 6 also ap-

pear in [Ai et al., 2021]. The author of this thesis contributed to parts of the experiments

and writing parts of the paper.
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1.4 Outline

We assume the reader is familiar with general background in Computer Science. For self-

consistency, we will however recall some specific concepts relevant to the understanding of our

contributions. We have chosen to present our contributions in a structurally simpler order

different from the chronological order. At the end, this thesis is organised as follows.

Chapter 2 reviews related work on Computability, Machine Learning, Logic Programming

and ILP.

Chapter 3 presents the MIL theoretical framework used throughout this thesis.

Chapter 4 introduces Active Bayesian MIL. Active Bayesian MIL uses active learning

for efficient MIL of agent strategies with reduced cost of experimentation. Chapter 4

addresses Subthesis S.1.

Chapter 5 introduces a complete bottom-up method which performs automated predicate

invention for improving sample and learning performance in MIL. Chapter 5 addresses

Subthesis S.2.

Chapter 6 introduces a new system called MIGO for efficient MIL of game strategies for

evaluable games. Chapter 6 addresses Subthesis S.3.

Chapter 7 summarises the contributions of this thesis, concludes it and discusses future

work.

Each of the Chapters 4, 5 and 6 will be concluded with a future work section addressing possible

extensions of the specific contributions presented in each of these Chapters. Conversely, Chapter

7 will include a more general description of global future work related to the claim supported

in this thesis.
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1.5 Summary

In this Chapter, we have articulated our motivations and objectives. This thesis aims to

investigate inductive learning of logic programs from data. We have indicated that this thesis

focuses on ILP which is a form of machine learning for inducing hypotheses, as logic programs,

from examples. We have clarified our focus in on monotonic learning. We have explained

that this thesis more specifically focuses on MIL, a state-of-the-art ILP framework. We have

emphasised that MIL approaches have limited sample and learning efficiency. We have claimed

that MIL sample and learning efficiency can be improved through 1) methods that revise the

instance space (Subthesis S.1), 2) methods that revise the hypothesis space (Subthesis S.2) and

3) methods that revise both the instance space and the hypothesis space (Subthesis S.3). We

have highlighted the contributions of this thesis which support our claim, some of which have

been published in venues we have stated. We have provided an outline of the organisation of

this thesis. The next Chapter reviews works related to this thesis.



Chapter 2

Related Work

This Chapter reviews works relevant to this thesis. Specifically, we focus on related work in

Machine Learning, Logic Programming and ILP. We assume the reader has a general Computer

Science background.

2.1 Machine Learning

2.1.1 Overview of Machine Learning

Machine learning is a subset of Artificial Intelligence focusing on the study of computer pro-

grams which improve their performance automatically over time through experience. Machine

Learning is defined as:

Definition 2.1 (Machine Learning System [Mitchell, 1997]). A computer program is said to

learn from experience E with respect to some class of tasks T and performance measure P , if

its performance at tasks T , as measured by P , improves with experience E.

The idea of a learning machine was introduced by Turing [Turing, 1950]. He anticipated the

difficulties of achieving human-level AI by manual programming and suggested instead building

machines that could learn in the same way as a human child [Muggleton, 2014].

13
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The first Machine Learning program [Samuel, 1959] aimed at learning the game of checkers

and succeeded in beating its creator. Samuel referred to "Machine Learning" for describing

a system which improves performance through experience rather than being explicitly and

manually programmed. Several significant successes of Machine Learning followed in game

learning (Atari games [Mnih et al., 2015], Chess [Romstad et al., 2017; Silver et al., 2018],

Shogi [Silver et al., 2018], Go [Silver et al., 2016; Silver et al., 2017], Dota 2 [OpenAI et al.,

2019], StarCraft [Vinyals et al., 2019]) outperforming the strongest human players.

Machine learning techniques are broadly divided into several categories: supervised, semi-

supervised, unsupervised learning and reinforcement learning. In supervised learning, the input

training data is labelled. The aim is to learn a function that correctly maps the inputs to their

labels. In unsupervised learning, the input training data is unlabelled. The aim is to learn a

function that describes the inherent structure of the unlabelled data. In semi-supervised learn-

ing, the input training data can be both labelled or unlabelled. The aim is to label unlabelled

data using knowledge from labelled data and the structure of all data. In reinforcement learn-

ing, the system learns from rewards and penalties instead of labels. Reward and penalties are

obtained after executing actions and might be indirect and delayed. The aim is to learn a policy

for choosing actions which maximises reward. In the following, we will focus on supervised and

semi-supervised learning.

2.1.2 Computational Learning Theory

Computational learning theory studies the feasibility and complexity of learning and proposes

computational models describing conditions for successful and efficient learning.

Early work on computational learning theory studied identification in the limit [Gold, 1967].

In this model, the learner is presented with a sequence of training examples, received one by

one at each time step. A class of languages is identifiable in the limit if there exists an effective

learner which, given any target language of the class and after receiving any sequence of training

examples, can correctly identify the target language in a finite amount of time. However, this

model of computation only accounts for an exact identification of the target theory in a finite
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number of steps and does not accept any approximation. Moreover, this model does not provide

any insight into the number of examples and computational resources required for convergence

or of the degree of error of output hypotheses.

Probably Approximately Correct (PAC) learning [Valiant, 1984] is a computational complexity

based model of learnability. In the PAC learning model, the learner receives examples drawn

independently and from the same distribution. The learner aims to find a good approximation

of the target theory with high probability and in a polynomially-bounded number of steps:

Definition 2.2 (PAC Learning [Mitchell, 1997]). A concept class C defined over an instance

space X is PAC-learnable by a learner L using an hypothesis space H if for all c ∈ C, for all

distributions DX over X , for all ε > 0 and for all δ > 0, the learner L outputs an hypothesis

h ∈ H with error at most ε and with probability at least (1 − δ) in time that is polynomial in

1
ε
,1
δ
, the size of instances in X and the size of c.

In other words, a concept class is PAC-learnable by a learning system if and only if the learning

system outputs with high probability (1− δ) an hypothesis that has a small error less than ε.

This definition implicitly assumes that the learner’s hypothesis space H contains an hypothesis

with arbitrarily small error ε for every target concept c ∈ C. Moreover, PAC-learning analysis

provides lower bounds on the learning performance. These bounds generally are loose compared

to empirical performance as they represent worst-case scenario. Finally, another limitation of

the PAC-learning model is that it incorporates declarative bias but can not incorporate any

assumption about the underlying probability distribution over target concepts.

To overcome these limitations, an average-case model of learning accuracy and sample effi-

ciency for two Bayesian algorithms has been provided [Haussler et al., 1994]. This model

depends on properties of both the prior distribution over concepts and the sequence of in-

stances seen by the learner. Similarly, U-learnability (Universal Learnability) [Muggleton and

Page, 1994] provides an average-case accuracy, sample and time analysis. U-learnability al-

lows the use of distributional assumptions over hypotheses as parametrised families of possible

prior distributions over hypotheses. Conversely to these two models [Haussler et al., 1994;

Muggleton and Page, 1994], identification in the limit [Gold, 1967] and the PAC learning
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model [Valiant, 1984] only describe conditions for successful learning but these models fail to

account for the efficiency of a learning process. The next subsections describe how to evaluate

the efficiency of a learning process along two dimensions: the sample efficiency and the learning

efficiency. These subsections also present related work aimed at improving the sample efficiency

and the learning efficiency.

2.1.3 Sample Efficiency

Sample Complexity A dimension for evaluating the efficiency of a learning system is the

data efficiency. Data efficiency is measured by the sample complexity:

Definition 2.3 (Sample Complexity). Given ε > 0, δ > 0, the sample complexity nex of a

learning system L for a concept class C is the minimum number of training samples m needed

by L to converge with high probability 1− δ to a hypothesis with error at most ε over concepts

drawn from C.

In the PAC-learning model, the Blumer bound [Blumer et al., 1989] provides an upper bound

over the sample complexity as a function of the size of the hypothesis space. Assuming ε > 0,

δ > 0, the Blumer bound states that the number of training examples nex required to PAC-learn

an hypothesis with error at most ε and with probability at least 1− δ from an hypothesis space

of size | H | is:

nex ≥
1

ε
(ln(| H |) + ln(

1

δ
) + ln(c)) with c constant (2.1)

The Blumer bound can be interpreted as the fact that any hypothesis which explains a suffi-

ciently large number of training data will generalise well over unobserved examples with high

probability. The Blumer bound falls within the PAC-learning model and therefore assumes that

a good approximation of the target hypothesis is within the learner’s hypothesis space. The

Blumer bound indicates that, when several hypotheses spaces verify this assumption, searching

the smaller space will result in higher predictive accuracies compared to searching the larger

space. In that sense, the availability of more prior knowledge can reduce the hypothesis space

thus improve the generalisation performance of the learner.
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This model of computation assumes examples are sampled independently at random.The sample

complexity also can be improved by considering different learning protocols, such as active

learning or reinforcement learning.

Active Learning Active learning is motivated by learning problems in which unlabelled

data is abundant but labels are expensive to obtain. An active learner seeks for low label

complexity: it aims to learn a model with high accuracy while minimizing the cost of labelling

data. To do so, an active learner can choose unlabelled data, also called instances, and query

their label to an oracle. Once labelled, an instance is called an example. The objective in

active learning is to learn a model with high performance while making fewer queries than the

number of random labels required by a passive learner to achieve the same accuracy. Active

learning has been widely adopted in various machine learning tasks including natural language

processing [Thompson et al., 1999], biological experimentation [King et al., 2004], computer

vision [Vijayanarasimhan and Grauman, 2009]. Different query scenarios have been introduced

[Settles, 2009; Hino, 2020].

In the membership scenario, the learner has access to an oracle which can provide on request

the label of any points from the instance space, even artificially generated ones [Angluin, 1988].

However, freely generated instances may be unnatural and uninterpretable to humans oracle

thus hindering their labelling. To alleviate this issue, newly generated instances can be re-

stricted to local queries, which are queries of instances close to training instances [Awasthi et

al., 2013]. A variant is learning with equivalence queries [Angluin, 1988]: instead of generating

instances, the learner generates and presents an hypothesis from the target concept class to the

oracle. The oracle either validates or invalidates this hypothesis. In the latter case, the oracle

also provides a counter-example. In stream-based selective sampling, the learner samples data

from the instance distribution and decides whether to label or discard each sampled instance

[Cohn et al., 1994; Freund et al., 1997]. Several criteria may be used for deciding whether or

not to query the label of an instance. The learner may for instance evaluate samples according

to some informativeness measure and query samples which evaluation is above some thresh-

old or use these evaluations to make biased random decisions. In pool-based active learning,
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the learner has access to a large set of initial unlabelled instances. The learner successively

chooses instances among this set and queries their label to an oracle [Lewis and Gale, 1994].

Instances typically are chosen greedily according to some informativeness measure evaluated

over all instances in the pool.

These query scenarios involve strategies for evaluating the informativeness of instances. The

learner for instance can compute an explicit region of uncertainty, which is the subpart of the

instance space on which competing hypotheses disagree. It only queries sampled instances that

fall within this region in stream-based selective sampling [Cohn et al., 1994]. Alternatively,

informativeness can be evaluated and scored using measures such as entropy [Shannon, 1948],

uncertainty sampling [Lewis and Gale, 1994], least confident sampling [Culotta and McCallum,

2005] and margin sampling [Scheffer et al., 2001].

We say that an hypothesis is consistent with some examples if it correctly predicts their labels.

An active learner aims to obtain information through labels to discriminate between compet-

ing hypotheses consistent with the examples seen so far. This set of competing consistent

hypotheses is called the version space and is defined as follows:

Definition 2.4. Assume an hypothesis space H and a set of training examples E, the version

space V is the subset of hypotheses from H consistent with the training examples E.

The version space contains all versions of the target concept that are plausible so far given

the training set. One can evaluate the shrinkage of the version space during the learning

process to measure the benefits of active learning over passive learning. Several measures

have been suggested for evaluating the size of the version space as a function of number of

labelled queried. These measures include the diameter of the version space [Dasgupta, 2005b;

Tosh and Dasgupta, 2017], the measure of the size of the region of disagreement [Hanneke, 2007;

Hanneke, 2014], the metric entropy [Kulkarni et al., 1993] and the size of the version space

[Mitchell, 1982; Dasgupta, 2005a]. For instance, in the version space learning algorithm, the

learns maintains a representation of the version space. The instances whose labels should be

requested are the instances which come closest to being consistent with exactly half of the

hypotheses in the version space [Mitchell, 1982]. These instances provide the highest expected
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information gain: regardless of their classification, finding out their label will allow rejecting the

closest to one-half of the current competing hypotheses. Therefore, in the optimal case and for

a finite hypothesis space H of size | H |, the correct target hypothesis can be found with only

log(| H |) experiments when following this query strategy and assuming the target hypothesis

is contained in the hypothesis space H. In Chapter 4, we will investigate an active learner

based upon this idea. We consider an extension to cope with potentially infinite hypothesis

spaces and aimed at learning agent strategies.

Reinforcement Learning Reinforcement learning [Sutton and Barto, 2018] considers an

autonomous agent interacting with an environment. The agent is equipped with sensors to

observe the state of its environment and it is capable of performing actions to alter the state of

its environment. The agent might receive rewards or penalties after performing some actions.

Rewards and penalties indicate the desirability of the resulting states. Goals are specified

as high-reward states. The reinforcement learning problem is for the agent to learn a policy

for choosing actions such as to maximise the total reward received and thus to achieve goals

[Mitchell, 1997]. Conversely to active learning, the agent receives rewards which may be indirect

and delayed instead of instance labels. Moreover, the task is to learn a policy maximising the

cumulative reward rather than to learn a label function of the inputs. As in active learning, the

agent influences the distribution of training examples received. A reinforcement agent obtains

training examples depending on the sequence of actions it chooses. Therefore, the choice of

experimentation strategy is crucial for effective learning. The agent should prefer actions that

it has already tried and that are known to yield good rewards. However, the agent first must

discover such actions. Besides, committing too early to good actions might imply missing out

on even better actions. In this sense, the learner faces a trade-off between exploitation and

exploration. It must balance the exploitation of states and actions that are known to yield

high-reward and the exploration of unknown states and actions for obtaining new information.

Another specificity of reinforcement learning is that rewards feedbacks are indirect and delayed:

rewards may only be credited after a sequence of moves. Therefore, it is unclear the degree

to which each move in the sequence deserves credit or blame for the rewards received. In this
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sense, the agent faces the temporal credit assignment problem [Minsky, 1961], which is the

problem of how to assign credit for the success among the many decisions that were involved.

Reinforcement learning has been widely studied in the context of game-playing. MENACE

(Matchbox Educable Noughts-And-Crosses Engine) [Michie, 1963] was the world’s earliest re-

inforcement learning system and was specifically designed to learn to play Noughts-and-Crosses.

An early manual version of MENACE used a stack of matchboxes. Each box represented an

accessible board position and contained coloured beads representing possible moves. Moves

were selected by randomly drawing a bead from the box representing the current board. After

having completed a game, MENACE’s punishment or reward consisted of changing the num-

ber of beads for the colours drawn in the boxes used during the game. Beads were added

or subtracted depending on the outcome of the game. This modified the probability of the

selected moves being played again in these board positions [Brooks, 2017]. HER (Hexapawn

Educational Robot) [Gardner, 1962] is a similar system for the game of Hexapawn. Samuel’s

program [Samuel, 1959] learns the game of checkers through self-play. It plays by performing

a look-ahead search based on Shannon’s minimax procedure [Shannon, 1950]. Each position

is given the score of the position that would result from the best move, assuming that the

opponent always chooses the move that minimises the learner’s score while the learner always

chooses the move that maximises its score. Samuel’s learning program also uses heuristics to

determine how to expand the search tree and when to stop searching. Time efficiency was

gained through rote learning: the program saves all board positions encountered together with

their computed scores.

More generally, Q-learning [Watkins, 1989] addresses the problem of learning an optimal policy

from delayed rewards and by trial and error. The learned policy takes the form of Q-values

associated with each action available from each state. These Q-values represent the maximum

expected discounted reward achievable if executing the action considered from the state con-

sidered. Q-learning is an algorithm that approximates the Q-values by successively updating

them according to the rewards received and the maximum discounted expected future rewards.

Q-learning does not require any prior knowledge about the environment and considers the re-

ward and action transition functions are unknown. A guarantee of asymptotic convergence to
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optimal behaviour has been proved for systems with bounded rewards and when each state-

action pair can be visited infinitely often [Watkins and Dayan, 1992]. Under these assumptions,

the convergence is guaranteed regardless of the training sequences chosen. However, choosing

suitable training sequences might improve the speed of convergence thus the learning efficiency.

A limitation of Q-learning is that the number of parameters to learn is the number of state-

action pairs. Q-learning presents little generalisation ability across pairs which highly limits

the sample efficiency as we will see in Chapter 6.

Deep reinforcement learning is an extension of Q-learning that uses a deep convolutional neural

network to approximate the Q-values. A deep Q-learner takes as input states and outputs the

predicted Q-value for all possible actions. Deep reinforcement learning systems provide better

generalisation ability and scalability which has been demonstrated through a diverse range

of tasks from the Atari 2600 games [Mnih et al., 2015], the game of Go [Silver et al., 2016;

Silver et al., 2017], Chess and Shogi [Silver et al., 2018], Dota 2 [OpenAI et al., 2019], StarCraft

[Vinyals et al., 2019]. However, these systems have inherent drawbacks. First, they suffer from

data inefficiency and generally require the execution of many games to converge. Moreover,

these systems lack the ability to transfer the knowledge learned to unseen domains. A change

in the inputs or goals, although minor, such as changing the colour or the size of an object

in a game, requires significant retraining. By contrast, a strength of human intelligence is the

ability to learn models and use them for radically different tasks [Lake et al., 2017]. Finally, the

learned strategy is implicitly encoded into the Q-value parameters which makes their operation

largely opaque to humans and little interpretable [Marcus, 2018].

Recent works have intended to explain the policies learned [Zahavy et al., 2016]. Deep symbolic

reinforcement learning [Garnelo et al., 2016] combines neural network learning with aspects of

symbolic AI to overcome the aforementioned shortcomings: a neural back-end builds a symbolic

representation, then a symbolic front end learns a policy in the form of Q-values. Relational

reinforcement learning [Džeroski et al., 2001; Tadepalli et al., 2004; Kersting et al., 2004] is a

reinforcement learning framework where states, actions and policies are represented relationally.

Relational reinforcement learning systems benefit from background knowledge and declarative

bias. They learn a Q-function using a relational regression algorithm [Driessens et al., 2001;
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Driessens and Ramon, 2003]. State, actions and learned policies have a relational representation

which allows to abstract over specific object identities as well as the number of objects involved

and simplifies transfer between tasks [Croonenborghs et al., 2008]. Hierarchical reinforcement

learning decomposes a reinforcement learning problem into a hierarchical process such that

higher levels correspond to high-level goals and lower levels to their execution. RePReL [Kokel

et al., 2021] combines a high-level hierarchical relational learner with a low-level reinforcement

learner. The former plans a sequence of subgoals to achieve its goal and the latter learns a policy

to achieve each of these identified sub-goals. Similarly, the ILP system δILP has been paired

with Q-learning, the former learns logical rules describing the state transitions between subtasks

and the latter learns a policy for each subtask [Xu and Fekri, 2021]. These systems achieve

state abstraction which provides improved data efficiency, better generalization to unseen tasks

and better interpretability.

By contrast, we will focus in Chapter 6 on devising a purely symbolic system addressing these

challenges.

2.1.4 Learning Efficiency

Time Complexity Besides sample efficiency, another dimension for evaluating the efficiency

of a learning system is time efficiency. Time efficiency is measured by the time complexity:

Definition 2.5 (Time Complexity). Given ε > 0, δ > 0, the time complexity T of a learning

system L for a concept class C is the minimum number of elementary computer operations

needed by L to converge with high probability 1 − δ to a hypothesis with error at most ε over

concepts drawn from C.

The time complexity is estimated by counting the number of elementary operations performed

by an algorithm, supposing that each elementary operation takes an equal fixed amount of

time to perform. For instance, the time complexity of a deterministic Turing machine is the

total number of operations the machine executes before it halts and outputs an answer. Time
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complexity usually is expressed as a function of the size of the input and one commonly focuses

on the asymptotic behaviour of the complexity when the input size increases.

Generalisation as Search The process of generalisation can be characterised as a search

problem [Mitchell, 1982]: the task is to identify hypotheses within a search space that are

consistent with the training instances. The search space, or hypothesis space, is defined by the

generalisation language. Therefore, the complexity of the search is a function of the complexity

of the representation. Methods for generalisation are characterised by the search strategies

they employ. Generate-and-test strategies generate new hypotheses independently of the input

data. These candidate hypotheses are then tested against the training set. By opposition, data-

driven strategies successively revise current hypotheses to eliminate inconsistencies between

these current hypotheses and the training data.

For any of these strategies, traversing this entire hypothesis space by explicitly enumerating

every hypothesis not only is inefficient for large hypothesis spaces but also can be infeasible

for infinite hypothesis spaces. However, the search can more efficiently be organised by taking

advantage of a general-to-specific ordering of hypotheses [Mitchell, 1997]. Informally, given two

hypotheses H1 and H2, H1 is more general than or equal to H2 if and only if any instance that

satisfies H2 also satisfies H1. In this case, H2 is said to be more specific than H1. For instance,

the bottom clause [Muggleton, 1995] is the most specific clause that entails an example. The

bottom clause can be used to constrain thus facilitate the search.

The version space strategy is a data-driven strategy. It involves maintaining a representation

of the version space, which is the set of all hypotheses consistent with the observed training

instances and describable within the given generalisation language. Version space algorithms

can cope with infinite hypothesis spaces when they use a compact description of the version

space which does not require explicitly enumerating all of its members. For instance, the version

space can be represented by two sets representing its most general and least general members

respectively [Mitchell, 1977]. In Chapter 4, we will represent the version space with sampled

representative members [Muggleton and Tamaddoni-Nezhad, 2008; Muggleton et al., 2013].
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Inductive Bias Inductive bias refers to the set of assumptions made by a learning algorithm

in order to induce an hypothesis. These assumptions might be explicitly stated or implicitly

encoded. These assumptions represent any basis for choosing one hypothesis over another, other

than consistency with the training examples [Mitchell, 1980]. The inductive bias defines the

hypothesis space. Introducing more bias reduces the size of the hypothesis space thus improves

learning performance. According to the Blumer bound described in Section 2.1.3, a stronger

bias in turn can provide lower predictive errors, assuming the target hypothesis is not excluded

from the hypothesis space. However, when a bias is too strong, it might be restrictive to the

point it rules out the correct hypotheses and their approximations from the hypothesis space.

In this sense, there is a trade-off between the search complexity, which is improved by a small

search space thus a strong bias, and the availability of a correct theory, which is improved by

a large search space thus a weak bias. In the extreme case, a learner with no bias makes no a

priori assumptions about the target hypothesis. Its unbiased hypothesis space is infinite and

contains all hypotheses. All consistent hypotheses in this unbiased hypothesis space are treated

equally with no preference. Therefore, there is no rational basis for generalisation leap. In that

sense, bias-free learning is futile [Mitchell, 1997].

Several kind of bias are usually used. First, the use of prior knowledge about the domain, or

background knowledge, can provide strong and justifiable constraints on the hypothesis space

[Mitchell, 1980]. Second, the search bias specifies the way the system searches through the

hypothesis space: it implements preference but no hard restrictions on hypotheses. Finally, the

language bias specifies the hypotheses that are allowed in the search space. It imposes hard

restrictions over the range of hypotheses that are expressible and therefore that can be learned.

For instance, a common bias is to bound the complexity of learned hypotheses. Occam’s razor

is a principle which formalises this bias. It states that the simpler hypothesis that fits the data

should be preferred. This razor can be justified by the fact that simpler models, in general,

are easier to understand, remember and use for humans, and easier to manipulate and store

for computers. However, the size of an hypothesis is representation-dependent, which implies

that learners with different representations can prefer different hypotheses. Moreover, greater

simplicity does not necessarily lead to greater accuracy [Domingos, 1999].
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Learning algorithms have traditionally relied on static and hand-designed bias. A challenge is

to automatically identify appropriate biases. These biases can be learned from previous learning

experience, which is a way to perform automated bias shift [Sutton, 1992]. In Chapters 5 and

6, we will investigate methods to acquire appropriate bias to improve learning efficiency.

2.2 Logic Programming

Logic Programming is a subset of Computational Logic. Logic programming concerns the

use of logic for representing and solving problems [Kowalski, 1979]. Logic Programming is a

declarative programming paradigm and is based on formal logic. Programs are logical theories,

computations and reasoning are achieved with deductive logical inferences over these theories.

For instance, resolution [Robinson, 1965] is a method for automated deduction using a single

rule of inference. Resolution is sound and complete for deductive inference in first-order logic.

Resolution uses unification to operate directly on first-order logic sentences. SLD-resolution

[Kowalski and Kuehner, 1971] is a more efficient inference method restricted to Horn logic.

Horn logic is a subset of first-order logic which still is Turing-complete [Tärnlund, 1977]. SLD-

resolution also is sound and complete for Horn logic.

Most common logic programming languages are Prolog, Datalog and Answer Set Programming

(ASP). Prolog [Colmerauer and Roussel, 1996; Sterling and Shapiro, 1994; Bratko, 2012] is

based on Horn logic and is a Turing-complete language. Computations within Prolog are the

search for logical proofs based on the application of SLD-resolution. Prolog uses a sequential

last-in-first-out backtracking execution strategy. Given a goal, multiple unifications during res-

olution might be possible which creates choice points. At each choice point, these alternative

unifications leading to different sub-goals are successively considered, one at a time, via back-

tracking. Prolog is not purely declarative, the execution depends on the order of clauses due to

the use of extra-logical features such as cuts. Prolog includes negation as failure which allows

for non-monotonic reasoning. Datalog [Ceri et al., 1989] syntactically is a subset of Prolog sub-

mitted to several restrictions. First, every variable that appears in the head of a clause must



26 Chapter 2. Related Work

also appear in a non-negated body literal of the same clause. Also, complex terms, such as

terms involving function symbols, are disallowed. Finally, the use of negation and recursion are

subject to stratification restrictions. Compared to Prolog, Datalog trades Turing-completeness

for decidability. Moreover, Datalog does not allow Prolog’s cut operator and is fully declarative.

Finally, ASP is based on stable model semantics [Gelfond and Lifschitz, 1988]. While a definite

logic program has only one model, an ASP program can have no model or multiple models

called answer sets. Compared to Datalog and Prolog, ASP is more expressive, and allows for

instance aggregates, disjunctions in the head of clauses, choice rules, hard and weak constraints.

2.3 Inductive Logic Programming

2.3.1 Logical Reasoning

Reasoning is the process of using existing knowledge to derive new knowledge. In logical

reasoning, the initial knowledge is called the premises and new knowledge derived are called

the conclusions. Premises and conclusions are logical sentences. The three major methods of

reasoning are deductive, abductive and inductive reasoning.

Deduction is the process of deriving the consequences of general statements to reach specific

conclusions. If the premises are true, the conclusions necessarily are true. Abduction is the

process of explaining observations, that is of reasoning from effects to possible causes. Induc-

tion is the process of deriving reliable generalisations from observations. Abduction usually

is regarded as the process of providing an explanation in the form of a set of ground facts

while induction is the process of providing an explanation in the form of a set of universally

quantified rules [Muggleton et al., 2014]. Unlike deductive reasoning, abductive and inductive

reasoning derive conclusions which are not guaranteed to be correct. Whereas deduction aims

to make explicit some conclusions already implicit the premises, abduction and induction aim

to discover new knowledge from observations. Both abduction and induction can be viewed as

the inverse of deduction. In the following, we investigate techniques that combine these three
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major methods of logical reasoning.

2.3.2 ILP

ILP [Muggleton, 1991; Nienhuys-Cheng, 1997; Cropper and Dumančić, 2022] is a form of ma-

chine learning which uses logic programming to represent knowledge. An ILP learner takes

as input some background knowledge and a set of training examples containing positive and

negative examples. The goal of an ILP learner is to induce an hypothesis as a logic program

which, together with the background knowledge, is consistent with the training examples and

generalises beyond them.

ILP benefits from several strengths. First, a distinctive feature of ILP systems is their ability

to make use of background knowledge. The importance of using initial built-in knowledge,

or background knowledge and the difficulty of learning without it has been pointed early on

[Turing, 1950] and is essential for achieving robust intelligence [Marcus and Davis, 2019]. ILP

systems can easily make use of prior domain knowledge and benefit from a strong explicit in-

ductive bias which provides a high generalisation capability. ILP systems are data efficient and

typically can generalise well from few examples only, often a single example [Lin et al., 2014;

Dai et al., 2017]. Moreover, ILP systems represent the examples, the background knowledge

and learned hypotheses as logic programs. The logical representation provides high expressiv-

ity to ILP systems which allows learning complex relational theories involving recursions and

high-level reasoning [Cropper et al., 2020a]. Also, since learned hypotheses are represented

in the same language as the background knowledge, they can easily be explicitly stored, re-

membered and then reused. Therefore, ILP systems naturally support lifelong learning and

transfer learning [Lin et al., 2014]. Finally, another strength of ILP systems is their abil-

ity to generate human-interpretable explanations. It is usually straightforward to translate

logic programs into a series of understandable sentences [Muggleton et al., 2012]. Learned

models thus can be read and examined by humans, which is crucial for explainable AI. Con-

versely, poor generalisation ability, the necessity for large training sets and limited comprehen-

sibility precisely are common limitations of other machine learning techniques [Chollet, 2019;
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Inductive Bias Predicate Invention Learning of recursion Hypothesis search
Progol mode declaration 7 partly bottom-up / top-down
TILDE mode declaration partly 7 top-down
Aleph mode declaration 7 partly bottom-up / top-down
ILASP mode declaration partly X meta-level
Metagol meta-rules X X top-down
δILP program templates partly X meta-level

HEXMIL meta-rules X X meta-level
Popper declarations X X meta-level

Table 2.1: Comparison of state-of-the-art ILP systems

Marcus and Davis, 2019] when learning rich representations from few examples is characteristic

of human intelligence [Lake et al., 2017].

These strengths have allowed ILP systems to achieve results in a wide range of challenging ap-

plications including learning game strategy [Bain and Muggleton, 1994], robot scientist [King

et al., 2004], modeling inhibition in metabolic networks [Tamaddoni-Nezhad et al., 2006], auto-

mated discovery of food web [Bohan et al., 2011], learning regular grammar [Muggleton et al.,

2014], string transformation programs [Lin et al., 2014], robot strategies [Cropper and Muggle-

ton, 2015], automated reconstruction of ecological networks [Bohan et al., 2017], logical vision

[Dai et al., 2017], Petri nets models of biological systems [Bain and Srinivasan, 2018] and code

search [Sivaraman et al., 2019].

We discuss in the following subsections features of ILP that support the strengths aforemen-

tioned. We compare state-of-the-art ILP systems along some of these features relevant to this

thesis. An overview of this comparison is presented in Table 2.1. We specifically focus on

comparing Metagol, on which this thesis is based, against related state-of-the art systems.

2.3.3 Inductive Bias

ILP systems make use of inductive bias to constrain and restrict the search. As explained in

Section 2.1.4, the inductive bias guides the search for consistent hypotheses and helps making

the search tractable. Language bias is a common ILP inductive bias: it specifies the hypothe-

ses allowed in the search space. Language bias in ILP is also called declarative bias and is

explicitly expressed logically. The language bias can be characterised as semantic bias, which



2.3. Inductive Logic Programming 29

imposes restrictions on the behaviour of induced hypotheses and syntactic bias, which imposes

restrictions on the form of clauses allowed in hypotheses [Adé et al., 1995]. Different repre-

sentations have been suggested to encode the syntactic declarative bias in ILP. For instance,

syntactic declarative bias has been specified by giving a grammar of the permitted clauses [Co-

hen, 1995]. Also, mode declarations specify which predicate symbols may appear in the head

or body of clauses, together with optional bounds over their number of occurrence in a clause,

the types of their arguments, and whether their arguments must be ground [Muggleton, 1995;

Blockeel and De Raedt, 1998; Srinivasan, 2001; Corapi et al., 2011; Law, 2018]. Alternatively,

meta-rules is another common declarative bias. Meta-rules are higher-order clauses which

act as program templates. A meta-rule specifies the form of clauses in the hypothesis space

including the number of body literals, the respective arity of head and body literals, the num-

ber and binding of first-order variables. Early versions of meta-rules, also called second-order

schema, have been introduced early on [Emde et al., 1983; Kietz and Wrobel, 1992; De Raedt

and Bruynooghe, 1992; Flener, 1996]. As shown in Figure 2.1, Metagol [Muggleton et al., 2015;

Cropper and Muggleton, 2016] and HEXMIL [Kaminski et al., 2018] both use meta-rules. Com-

pared to mode declarations, meta-rules impose a stronger bias. Conversely to mode declara-

tions or grammars, meta-rules used in MIL are logical statements, which provides the potential

for reasoning about them and manipulating them alongside first-order background knowledge

[Muggleton et al., 2015]. We will use meta-rules as language bias in this thesis. δ-ILP uses rule

templates which similarly describe the set of rules which can be generated. Finally, Popper

[Cropper and Morel, 2021] uses declarations, which specify the predicate symbols that may

appear in the head or body of clauses, the maximum number of variables and literals in clauses

and the maximum number of clauses.

Choosing an appropriate language bias is crucial for realisable and tractable learning. The

language bias must be expressive enough to allow the representation of consistent hypotheses in

the hypothesis space. However, the language bias must be precise enough to restrain the search

space and make the search tractable. The choice of appropriate language bias has traditionally

relied on user choices based on knowledge about the domain. Recent work have focused on

theoretically identifying general bias as irreducible sets of meta-rules sufficiently expressive to
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allow induction of all programs in some fragments of dyadic logic [Cropper and Muggleton, 2014;

Cropper and Tourret, 2020]. Alternatively, language bias can be learned. For instance, meta-

knowledge about type, mode or predicate symmetry can be extracted from the data [McCreath

and Sharma, 1995]. Alternatively, constraints over the hypothesis space can be learned across

multiple tasks [Bridewell and Todorovski, 2007]. Finally, language bias shift can automatically

be performed when the language bias is not sufficient to describe a consistent hypothesis. For

instance, Clint changes its bias from a series of built-in description languages when necessary

[De Raedt and Bruynooghe, 1992].

2.3.4 Background Knowledge

ILP systems have the distinctive ability to make use of background knowledge. The background

knowledge is provided as input in the form of a logic program. It is a set of relational predicates

explicitly defined and which provide information about the domain studied. The background

knowledge is a form of inductive bias which restricts the hypothesis space, guides the search

for hypotheses thus facilitates learning [Gulwani et al., 2015].

Given a problem, specific background knowledge can be hand-written by domain experts, which

tailor and carefully choose which knowledge to include. However, manual selection of appro-

priate background knowledge can be time-consuming, expensive and cumbersome for users.

Moreover, the reliance on hand-written background knowledge prevents straightforward ex-

trapolation of systems across different domains. Finally, the background knowledge must be

carefully selected and its choice is crucial for learning performance. Indeed, the size of the

hypothesis space is a function of the size of the background knowledge. A large background

knowledge with irrelevant information can hinder the search for good hypotheses [Srinivasan et

al., 2003]. Conversely, too few background knowledge may lead to an expensive construction

of a consistent hypothesis or may not even allow for the representation of a consistent hypoth-

esis. In that sense, selection of adequate and relevant background knowledge is determinant

and can improve learning performance. A challenge is to find a suitable trade-off between a

large background knowledge which allows to represent a multitude of hypotheses and to solve a
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multitude of problems, but limited enough such that the learner is not overwhelmed [Cropper,

2020].

For instance, selection of relevant background knowledge has been evaluated based on gen-

erality of background predicates [Patsantzis and Muggleton, 2018], statistical or syntactical

criteria [Cropper, 2020]. Deepcoder [Balog et al., 2017] trains a neural network to predict the

probability of background predicates appearing in the program that generated the examples.

These predictions are used to guide the search for consistent hypotheses. DreamCoder [Ellis et

al., 2018] learns via bootstrapping new and reusable knowledge that is shared in a multi-task

setting while jointly training a neural network to efficiently predict the posterior of programs

in the resulting search space.

In Chapter 5, we extend the learner’s language with predicate invention: the background

knowledge is augmented with an extension of the immediate consequence operator. Selection

of relevant predicates is performed in a logical setting, and is based upon equivalence of logic

programs from success sets.

2.3.5 Predicate Invention

Predicate invention is the automatic introduction of new predicates in the language. Instead

of relying exclusively on predicates provided as part of the background knowledge, a learner

which can perform predicate invention can invent new definitions thus augmenting its available

vocabulary. Predicate invention is a way of performing automated discovery of new reusable

sub-concepts [Muggleton et al., 2012]. These sub-concepts can be combined to build hierarchies

of structured components that represent increasingly abstract and complex ideas. This ability

to construct complex concepts through hierarchical combinations of primitive features is a key

characteristic of human intelligence [Kurzweil, 2013] and is crucial for developing intelligent

systems [Kramer, 2020].

Predicate invention has two main uses when learning [Kramer, 1995]. First, the introduction

of new predicates can be used for reformulating a program, thus providing a simpler and more
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compact representation within the target language [Flach, 1993; Stahl, 1993]. Simpler represen-

tations in general are more structured and more human-readable. Also, simpler representations

are easier to learn according to the Blumer bound [Blumer et al., 1989] since a smaller space

needs to be searched. In this sense, predicate invention, by providing access to simpler represen-

tations, can help improving learning performance [Cropper, 2019]. Second, predicate invention

has been investigated as bias shift [Stahl, 1995] for overcoming the limitations of insufficient

vocabulary for learning. The introduction of new predicates extends the hypothesis language

which in turn broadens the range of expressible and thus learnable concepts. In this sense,

predicate invention may allow to learn hypotheses for tasks which are unsolvable in the initial

language. Predicate invention is a hard challenge in ILP due to its high combinatorial com-

plexity [Kramer, 1995; Muggleton et al., 2012]. The construction of irrelevant predicates may

be useless, or even affect learning performance, therefore one must detect situations in which

predicate invention can be useful and should be performed [Stahl, 1994]. Also, the number of

predicates that can potentially be constructed is very large since invented predicates may have

varying arities, arguments and definitions. Therefore only a small selected subset of invented

predicates can practically be constructed. Finally, the predicates generated may be evaluated

and non-useful ones discarded [Kramer, 1995].

As shown in Table 2.1, early ILP systems, such as Progol [Muggleton, 1995] or Aleph [Srini-

vasan, 2001] do not support predicate invention. CIGOL [Muggleton and Buntine, 1988] uses

an early predicate invention approach based on the use of W operators within the inverting

resolution framework. CIGOL performs interactive predicate validation: the system asks the

user to validate and name new invented predicates which limits their number and guarantees

some level of relevance and comprehensibility. Compression is a major criterion for generating

invented predicates [Kramer, 1995]. Early ILP approaches identified similar patterns in the

data that are not due to chance and exploited compression of hypotheses to form more com-

pact theories through the generation of new concepts. For instance, Duce [Muggleton, 1987]

and CIGOL [Muggleton and Buntine, 1988] prefer operators on the basis of their ability to

shorten the minimal achievable encoding of the examples. FRINGE [Pagallo and Haussler,

1990] constructs boolean features by searching for repeated occurrences at the fringe of deci-
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sion trees. CHAMP [Kijsirikul et al., 1992] constructs a new predicate when no clause can be

learned from the available predicates. In this case, it identifies a minimal variable set and uses

it to form a new predicate that discriminates between positive and negative examples while re-

ducing the encoding of positive examples. Statistical predicate invention [Kok and Domingos,

2007] automatically invents predicates which compress the data by means of multiple relational

clusterings of the object, attribute and relation symbols in the data. It iteratively refines these

clusters of symbols based on the clusters of symbols they appear in atoms with. CUR2LED

[Dumančić and Blockeel, 2017] forms predicates from clustering constants and relations in the

background knowledge according to various similarity measures. Alps [Dumančić et al., 2019]

performs predicate invention in a way inspired by neural auto-encoders. An encoding logic

program mapping the input data to a compressed latent symbolic representation is learned. A

decoding logic program reconstructs the data from its latent representation. Knorf [Dumancic

et al., 2021] compresses learnt programs by removing redundancies in them. Knorf in particular

revises invented predicates and introduces new ones, such as to optimise the representation of

knowledge.

A restricted form of predicate invention, called prescriptive predicate invention, relies on user-

provided specification of the arity and argument types of the new predicates [Corapi et al., 2011;

Law, 2018; Evans and Grefenstette, 2018]. Conversely, automated predicate invention does not

require the user to define the structure of invented predicates. For instance, MIL systems

[Muggleton et al., 2014; Muggleton et al., 2015; Kaminski et al., 2018] achieve automated

predicate invention from the use of meta-rules by introducing new predicate symbols during the

construction of meta-substitutions. In Chapter 5, we extend MIL with an automated predicate

invention method. Predicates are invented bottom-up from the background knowledge. We

demonstrate it can improve learning performance. Predicate invention in MIL is also related to

predicate invention realised by meta-level abduction [Inoue et al., 2009]. Compared to meta-

level abduction, MIL introduces new predicate symbols which represent relations rather than

new objects or propositions.

Finally, an algorithm related to predicate invention is reformation [Bundy and Mitrovic, 2016].

Reformation automatically changes the language to repair faulty logical theories. Typical lan-
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guage changes include splitting or merging of predicates and changing the arity of predicates.

2.3.6 Learning of Recursion

A recursive logic program is a program in which the same predicate appears both in a head

and a body literal in a same rule. Recursions allow for compact representations with high

generalisation ability: recursive hypotheses have finite size but can generalise to arbitrary input

size and are applicable to an infinite set of atoms [Cropper and Dumančić, 2022]. In this sense,

recursion provides high expressivity. Systems that support recursion can generalise from small

numbers of examples, often a single one [Lin et al., 2014; Cropper, 2019]. Conversely, systems

which can not learn recursions need to learn a separate definition for each possible depth of

execution. The ability to learn recursions thus is valuable for a wide range of applications

[Muggleton et al., 2014; Lin et al., 2014; Cropper, 2019] but is considered as a difficult problem

in ILP [Muggleton et al., 2012; Cropper et al., 2020a].

Early ILP systems, such as GOLEM [Muggleton and Feng, 1990] or TILDE [Blockeel and

De Raedt, 1998] cannot support recursion. As shown in Table 2.1, some systems, such as

Progol [Muggleton, 1995] or Aleph [Srinivasan, 2001], only support limited recursion. They

require examples of the base and inductive cases in that order. Also, they can not learn

mutually recursive definitions of different relations. By opposition, recent systems based on

MIL (Metagol [Muggleton et al., 2015], HEXMIL [Kaminski et al., 2018]) rely on the use of

meta-rules and can learn recursive programs thanks to the use of recursive meta-rules. Other

recent ILP systems (δILP [Evans and Grefenstette, 2018], ILASP systems [Law, 2018], Popper

[Cropper and Morel, 2021]) also support efficient learning of recursive logic programs. In the

following Chapters, we learn hypotheses such as agent strategies or string transformations

involving recursion.
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2.3.7 Hypothesis Search

ILP systems search for a consistent hypothesis in the hypothesis space defined by the language

bias. As explained in Section 2.1.4, the search can be made more efficient by making use of

the ordering of hypotheses imposed by a generality relation. Having ordered the hypothesis

space, usual search approaches are bottom-up and top-down. Bottom-up algorithms start from

specific hypotheses from the examples and then generalise them. For instance, the propositional

learner Duce [Muggleton, 1987] begins with a set of specific rules, one for each positive example.

This set is successively generalised using six operators: at each iteration the generalisation

which produces greater compression of the rule set is chosen. CIGOL [Muggleton and Buntine,

1988] generalises first-order rules using inverse resolution. Golem [Muggleton and Feng, 1990])

successively generalises pairs of examples using relative least-general generalisation. XHAIL

[Ray, 2009] performs abductive, deductive, and inductive inference for generalising an initial

ground specific hypothesis called Kernel Set. Conversely, top-down algorithms first compute

a most general hypothesis and then specialise it. FOIL [Quinlan, 1990] successively forms

clauses by successively adding body literals according to an information heuristic until no

negative examples are covered. TILDE [Blockeel and De Raedt, 1998] starts with the most

general program, the empty one, and successively specialises it by adding decision nodes with

the highest information gain thus splitting the training set. Finally, variants of bidirectional

search were implemented in algorithms alternating generalisation and specialisation steps to

search through the lattice of clauses [Fensel and Wiese, 1993; Zelle et al., 1994; Srinivasan,

2001; Califf and Mooney, 2003]. For instance, Progol [Muggleton, 1995] constructs a most

specific clause, the bottom clause, that entails an uncovered positive example. Next, Progol

performs a top-down search by employing a variant of the A* search to find the best possible

consistent definition in the search space bounded by the bottom clause. Aleph employs a similar

combination of bottom-up and top-down strategies. Similarly, Fastlas [Law et al., 2020] first

identifies a subset of the hypothesis space from specific rules covering single examples. It then

uses a meta-level approach to search this space.

Finally, recent ILP learners employ a meta-level search. For example, the search can be for-
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mulated as an ASP problem and be delegated to an ASP solver (ASPAL [Corapi et al., 2011],

ILASP [Law, 2018], HEXMIL [Kaminski et al., 2018], Popper [Cropper and Morel, 2021], the

Apperception Engine [Evans et al., 2021]). δ-ILP [Evans and Grefenstette, 2018] implements

the ILP problem as a differentiable neural-based architecture.

2.3.8 Lifelong Learning

Lifelong learning [Mitchell et al., 2018] is a paradigm is which the learner is presented with a

collection of tasks and learns cumulatively: knowledge acquired from solving one problem can

be used to help learning more effectively subsequent tasks. Lifelong learning leverages transfer

learning in order to reduce the learning complexity of subsequent learning tasks. The lifelong

learning problem can be framed as bias learning: the learner’s task is to find a bias as an

hypothesis space that is appropriate for the environment considered [Baxter, 2000]. As more

tasks are observed, the system changes its bias to accommodate to the distribution of tasks

presented. Lifelong learning has initially been introduced in robotics [Thrun and Mitchell,

1995].

The symbolic representation makes ILP systems naturally suited for lifelong learning. Since

hypotheses are encoded in the same language as the background knowledge, learned hypotheses

can easily be stored in the background knowledge [Muggleton et al., 2012; Cropper et al., 2020a].

Lifelong learning allows for ILP systems to acquire background knowledge through time instead

of relying on predefined and manually chosen background knowledge. This is a form of bias

shift.

For instance, Dependent Learning [Lin et al., 2014] allows the automatic construction of a

series of predicates with increasing levels of abstraction. The learner is given a series of tasks

with varying complexity. The learner starts with a low limited complexity k and finds all

tasks which can be solved using at most k clauses. Each learned definition is added in the

background knowledge and the corresponding task is marked as solved. The clause bound

k is incremented. Next, the learner attempts to solve remaining unsolved tasks while being

allowed to reuse definitions learned in the previous depth bounds. This process repeats until
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the maximum clause bound is reached or until all tasks are solved. Thus, Dependent Learning

can automatically identify easier problems, solve them and reuse the solutions to help solve

more complex problems [Cropper et al., 2020a]. At the end, the learned program is a hierarchy

of concepts: the system starts by learning simpler reusable rules, and builds more complex

rules on top of each other. Dependent Learning has been demonstrated to improve learning

performance over a series of tasks. Playgol [Cropper, 2019] acquires reusable knowledge in an

initial unsupervised stage. Before solving the tasks at hand, the learner first plays: it randomly

samples a set of tasks which it attempts to solve with Dependent Learning. Tasks are generated

randomly by sampling instances from the instance space. Any learned solution is saved in the

background knowledge as new invented predicates. After playing, Playgol solves the tasks at

hand, while being allowed to reuse any solution learned whilst playing. In Chapter 6, we use a

variant of Dependent Learning to learn game strategies.

2.3.9 Comprehensibility

The definition of Machine Learning presented in Definition 2.1 relies on a performance mea-

sure to evaluate the quality of Machine Learning systems. Michie defined Machine Learning

performance in terms of two orthogonal axes: predictive accuracy and comprehensibility of

generated hypotheses [Michie, 1988]. While early Machine Learning systems have only focused

on predictive power, the need and importance for comprehensibility of learning systems has

recently been acknowledged [Adadi and Berrada, 2018; Gunning and Aha, 2019]. Comprehen-

sibility is fundamental in the context of many applications in which transparency and trust

are essential. However, lack of comprehensibility is a limitation of current approaches which

generally lack the ability to explain their decision and suffer from opacity. For instance, deep

learning systems are criticised for being far not sufficiently transparent [Marcus, 2018]. Con-

versely, symbolic systems are inherently interpretable. In ILP, hypotheses are output as logic

programs and usually are thought to be relatively easy to comprehend since verbal explanations

can be generated from the reasoning trace in a straightforward manner [Muggleton et al., 2012;

Schmid, 2021].
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A difficulty is to measure the comprehensibility and performance of learning systems. Michie

specified three criteria for evaluating qualities of Machine Learning systems [Michie, 1988].

First, the weak criterion holds for machine learners which predictive performance improves

with increasing amounts of data. Second, the strong criterion additionally requires the learning

system to provide its hypotheses in symbolic form. Last, the ultra-strong criterion extends the

strong criterion and additionally requires the machine learner to be able to teach the learned

hypothesis to a human, whose performance is consequently increased to a level beyond that of

the human studying the training data alone [Muggleton et al., 2018b]. Recent work [Muggleton

et al., 2018b] provides an operational definition for comprehensibility of logic programs based

on Michie’s ultra-strong criterion. Comprehensibility is estimated using human participant

trials. The authors evaluate the comprehensibility of ILP hypotheses and provide the first

demonstration of Ultra-Strong Machine Learning for an ILP system. Results are based on

experimental evidence of improvement of human performance after being presented with first-

order machine learned logic theories. Results indicate that comprehensibility is affected not only

by the complexity of the presented program but also by the existence of anonymous predicate

symbols [Schmid et al., 2017]. We introduce in Chapter 6 a purely symbolic learner and show

the underlying learned model provides some form of comprehensibility which will be discussed.

2.4 Summary

We have reviewed in this Chapter related work in Computability, Machine Learning, Logic

Programming and ILP. Specifically, we have reviewed related work in active learning and re-

inforcement learning for revising the instance space. We have characterised induction as the

search for consistent hypotheses. We have discussed the role of the inductive bias to guide this

search and thus to improve learning efficiency. We have surveyed related work on ILP, which

is a form of machine learning for inducing hypotheses, as logic programs, from examples. We

have examined the strengths of ILP. Specifically, we have mentioned features of MIL, a state-

of-the-art ILP technique on which we will focus in the this thesis. The next Chapter formalises

the MIL theoretical framework used throughout this thesis.



Chapter 3

Theoretical Framework

This Chapter introduces the logical notation and the MIL theoretical framework used through-

out this thesis.

3.1 Logic Programming

We start by restating relevant logic programming terminology and refer the reader to [Lloyd,

1987; Nienhuys-Cheng, 1997] for a more detailed description of logic programming notation.

3.1.1 First-order syntax and semantics

A variable is first-order if it can be bound to a constant symbol or another first-order variable.

A variable is denoted by a string of characters or digits. A function symbol or a predicate

symbol is denoted by a string of characters or digits starting with a lower-case letter. The arity

of a function or predicate is the number of arguments it takes. A function or predicate p with

arity a is denoted as p/a. Function and predicate are said to be monadic or dyadic when they

have arity one or two respectively. A constant symbol is a function or a predicate symbol with

arity zero. The constant signature C is the set of all constants. The predicate signature P is the

set of all predicate symbols. The alphabet consists of logical symbols (negation ¬, conjunction

39
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∧, disjunction ∨, implication→, equivalence↔, existential quantifier ∃ and universal quantifier

∀), the constant signature C, the predicate signature P , the set of function symbols and the

variables. A language L is the set of all formulae that can be constructed from the symbols in

the alphabet. A well-formed formula, or formula, is a finite sequence of symbols that is part

of the language. A first-order term is a first-order variable, a constant symbol or a function

symbol of arity n applied to a n-tuple of first-order terms. A term is ground if it contains no

variables. A first-order atom is a predicate symbol of arity n applied to a n-tuple of first-order

terms. An atom is ground if all of its terms are ground. A first-order literal is a first-order atom

A or its negation ¬A, the former being called a positive literal and the latter a negative literal.

A variable is first-order if it is quantified over terms. First-order variables are represented with

lower-case letters (eg: a, b, c). The process of replacing existential first-order variables with new

unique constants is called Skolemisation. The unique constants are called Skolem constants.

A clause or a rule is a disjunction of literals. First-order variables in a clause are existentially

or universally quantified but quantifiers may be omitted for brevity. A clause is ground if it

contains no variables. The head and the body of a clause are its set of positive and negative

literals respectively. A Horn clause is a clause which contains at most one positive literal. A

definite clause is a Horn clause which contains exactly one positive literal. A goal is a Horn

clause which contains no positive literals. A Horn clause is unit if it contains exactly one

positive literal and no negative literal. A fact is a ground unit clause. A clausal theory is

a conjunction of clauses. A clausal theory in which all predicates have arity at most one or

two is called monadic or dyadic respectively. A logic program is a finite clausal theory. A

definite program is a logic program in which each clause is definite. A Datalog program is a

first-order definite logic program which contains no function symbols other than constants, for

which each variable in the head also appears in a non-negated first-order body literal and with

stratification restrictions on the use of negation and recursion. In the following, we represent

abstract representations of logic programs following logical conventions and executional logic

programs as Prolog programs. Logic programs are named with calligraphic upper-case letters

(eg: P, Q) apart from background knowledge programs and hypothesis programs which are

represented with the usual ILP notation B and H respectively.
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A first-order substitution θ is a finite set of the form: θ = {x1/t1, ..., xn/tn} where n ≥ 0, the xi

are distinct first-order variables and the ti are first-order terms. The substitution θ is a ground

substitution if every ti is ground. The instance of a formula F by a first-order substitution θ,

called Fθ, is the formula obtained by simultaneously replacing each occurrence of the first-order

variable xi in F by the term ti for all 1 ≤ i ≤ n. A unifier for the formulae F1 and F2 is a

first-order substitution θ such that F1θ = F2θ. F1 and F2 are said to be unifiable if there exists

a unifier for F1 and F2. A most general unifier for the formulae F1 and F2 is a unifier θ for F1

and F2 such that, for any unifier σ for F1 and F2, there exists a first-order substitution γ such

that σ = θγ. The clause C is said to θ-subsume D, or simply subsume D, denoted by C � D,

if there exists a first-order substitution θ such that Cθ ⊆ D [Plotkin, 1969]. A clause C is

more specific than a clause D if D subsumes C. Conversely, a clause C is more general than

a clause D if C subsumes D. θ-subsumption is reflexive, transitive but not anti-symmetric.

Subsumption is used to define a quasi-order over hypotheses spaces.

The Herbrand Universe UL of a language L is the set of all ground first-order terms which can

be formed out of the constants and function symbols appearing in L. The Herbrand Base BL of

a language L is the set of all ground atoms which can be formed out of the predicate signature P

of L and the Herbrand Universe UL of L. An interpretation ID over a domainD is an assignment

of truth values to the elements of the set D. An interpretation ID is represented as a subset of

the domain D which includes elements that are true in ID. A Herbrand interpretation over a

language L is an interpretation for L based on the Herbrand base. A model of a set of formulae

F is an interpretation I over F in which every formula of F is true with respect to I. A formula

is valid if every interpretation is a model, satisfiable if it has at least one model, unsatisfiable if

it has no model. A Herbrand model of a set of formulae F is a Herbrand interpretation which

is a model for F . A Herbrand model is minimal if no proper subset of it is also a model. For

a definite first-order program, the intersection of all Herbrand models is the unique minimal

Herbrand model called the least Herbrand model. A formula c is a logical consequence of a set

of formulae F if every model of F is a model of c, it is written F |= c. For a definite first-order

program P, the set of all logical consequences of P is equal to the least Herbrand model of P

[Van Emden and Kowalski, 1976]. We then define the immediate consequence operator of a
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definite first-order program:

Definition 3.1 (Immediate Consequence Operator of a Definite First-Order Program). Let P

be a definite first-order logic program. The immediate consequence operator TP associated with

P is a mapping from subsets of the Herbrand base BP to subsets of BP defined as:

∀I ⊆ BP, TP(I) = {α ∈ BP | α← B1, ..., Bm,m ≥ 0 is

a ground instance of a clause in P and {B1, ..., Bm} ⊆ I}

For a definite program P, the least fixed point of the immediate consequence operator TP is

equal to the least Herbrand model of P [Van Emden and Kowalski, 1976].

SLD-Resolution [Kowalski and Kuehner, 1971] is an inference rule for Horn clauses. Let G1 =←

A1, ..., Am, ..., Ak be a goal and C = A← B1, ..., Bq be a first-order Horn clause. Then the goal

G2 derived by SLD-Resolution from G1 and C is ← A1, ..., B1, ..., Bq, ..., Ak when θ is a most

general unifier of Am and A. The atom Am is called the selected atom in G1 and G2 is called a

resolvent of G1 and C. A SLD-Derivation of a program P and a definite goal G0 is a possibly

infinite sequence of goals {G0, G1, ...} such that each Gi+1 is the resolvent of Gi with some clause

in P. A finite SLD-Derivation of the empty clause from P is called a SLD-Refutation of P. A

SLD-tree of a goal G and a first-order program P is a tree which root is G and containing all

possible derivations of G with P. We then define the success set of a first-order logic program:

Definition 3.2 (Success Set of a First-Order Program). Let P be a logic program. The success

set SS(P) of a program P is the set of all atoms from the Herbrand Base BP with a refutation:

SS(P) = {A ∈ BP | P ∪ ¬A has an SLD-refutation }

For a definite first-order program, the success set is equal to its least Herbrand model [Apt and

Van Emden, 1982].

A goal is decidable if there exists a terminating effective procedure for determining its truth

value. Two desirable properties of logical systems are soundness and completeness. A system is
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said to be sound if it allows only logical consequences of the premises to be derived. A system

is said to be complete if every formula that is a logical consequence of the premises can be

derived by this system.

In the following, we denote by X the instance space, which is the set of all possible examples

and we denote by H the hypothesis space, which is the set of logic program definitions defined

over the instance space and expressible with the hypothesis language.

3.1.2 Second-order syntax and semantics

We consider an extension of the first-order syntax and semantics to second-order logic. A

variable is second-order, or higher-order, if it is quantified over predicate symbols. Second-

order variables are denoted with upper-case letters (eg: P , Q, R). A second-order term is a

second-order variable or a function symbol of arity n applied to a n-tuple of terms, at least one

of them being second-order. An second-order atom is a predicate symbol of arity n applied to

a n-tuple of terms, at least one of them being second-order. A second-order literal is a second-

order atom A or its negation ¬A, the former being called a positive literal and the latter a

negative literal. The process of replacing existential second-order variables with new unique

constants is called Skolemisation. The unique constants are called Skolem constants.

A clause is second-order if it contains at least one second-order literal. Second-order variables

in a clause are existentially or universally quantified but quantifiers may be omitted for brevity.

A logic program is second-order if it contains at least one second-order Horn clause.

A second-order substitution θ is a finite set of the form: θ = {x1/t1, ..., xn/tn} where n ≥ 0,

the xi are distinct variables, and the ti are terms, and at least of the xi, ti is second-order. The

instance of a formula F by a second-order substitution θ, called Fθ, is the formula obtained

by simultaneously replacing each occurrence of the second-order variable xi in F by the term

ti for all 1 ≤ i ≤ n.
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3.2 Inductive Logic Programming

Three settings have been defined for ILP differing by the type of training examples [De Raedt,

1997]. In the learning from interpretations setting [De Raedt and Džeroski, 1994; Blockeel et

al., 1999], an example is a set of facts representing a logical interpretation I. An example I is

covered by an hypothesis H if I is a model for H. In the learning from proof setting [Passerini

et al., 2006], an example is a proof or a trace, and an hypothesis H covers an example P if P

is a proof for H. We focus in the following on the learning from entailment setting [Muggleton

and De Raedt, 1994]. When learning from entailment, training examples are clauses and the

ILP problem in the learning from entailment setting is defined as follows.

Definition 3.3 (ILP Problem [Nienhuys-Cheng, 1997]). Assume input is a pair (B,E) where

B is a logic program representing the background knowledge, and E = E+ ∪ E− is a pair of

sets of clauses representing positive and negative examples. The ILP problem is to induce an

hypothesis H as a logic program which, together with the background knowledge, entails all the

positive examples and none of the negative examples:

∀e+ ∈ E+, B ∪H |= e+

∀e− ∈ E−, B ∪H 6|= e−

Given background knowledge B, an hypothesis H is said to cover the example e if e is entailed

by the hypothesis H, that is if e is true in all Herbrand models of B ∪H. A theory H is said

to be complete if H, together with the background knowledge B, entails all positive examples.

A theory H is said to be consistent if H, together with the background knowledge B, does not

entail any of the negative examples. H is said to be correct if it is both complete and consistent

[Nienhuys-Cheng, 1997]. Definition 3.3 may be relaxed to cope with noise, in which case the

ILP problem aims at finding an hypothesis H that covers as many positive examples as possible

but as few negative examples as possible.

Although Definition 3.3 allows examples, background knowledge and hypotheses to be any well-

formed formulae [Muggleton and De Raedt, 1994], we consider in this thesis that the examples E
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are pairs of sets of ground atoms and that the background knowledge B is a definite program.

We also restrict hypotheses H to be definite programs with no function symbol, ie Datalog

programs. In Chapter 6, we relax this restriction and learn programs with stratified negation.

3.3 Meta-Interpretive Learning

MIL is a form of ILP on which we will focus in the following. We describe within this section

the MIL framework which we will use throughout this thesis.

3.3.1 MIL Problem

MIL [Muggleton et al., 2014; Muggleton et al., 2015] is a subfield of ILP. As an ILP learner, a

MIL learner follows Definition 3.3. We focus on the learning from entailment setting [Muggleton

and De Raedt, 1994] although variants of MIL have been discussed within the learning from

interpretations setting [Muggleton et al., 2015]. The MIL problem is defined as:

Definition 3.4 (MIL Problem). Assume input is a pair (B,E) where the background knowledge

B is a second-order logic program B = Bc ∪M composed of a definite first-order logic program

background knowledge Bc and second-order meta-rules M and the examples E = E+ ∪ E− is

a pair of sets of ground atoms representing positive and negative examples. The MIL problem

is to induce an hypothesis H as a definite logic program which, together with the background

knowledge, entails all the positive examples and none of the negative examples:

∀e+ ∈ E+, B ∪H |= e+

∀e− ∈ E−, B ∪H 6|= e−

B |= H

In other words, the goal of a MIL learner is to find a hypothesis which, together with the

background knowledge, entails all of the positive examples but none of the negative ones. The
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background knowledge contains first-order clauses and second-order clauses, the meta-rules.

3.3.2 Meta-rules

Compared to a traditional ILP learner, a distinctive feature of MIL is the use of meta-rules M

as part of the background knowledge B. Meta-rules are higher-order clauses with existentially

quantified and universally quantified first-order and second-order variables:

Definition 3.5 (Meta-rule [Muggleton et al., 2015]). Given a set of constant symbols C and a

set of predicate symbols P, a meta-rule is a higher-order formula of the form:

∃σ∀τ, P (s1, ..., sm)← Q1(t1,1, ..., t1,i1), ..., Qk(tk,1, ..., tk,ik).

where σ, τ are disjoints sets of variables such that P,Q1, ...Qk ∈ σ∪τ∪P and s1, ..., sm, t1,1, ..., tk,ik ∈

σ ∪ τ ∪ P ∪ C. In general, quantifiers are omitted for brevity and meta-rules are denoted more

concisely as:

P (s1, ..., sm)← Q1(t1,1, ..., t1,i1), ..., Qk(tk,1, ..., tk,ik).

In the following, meta-rules are treated as second-order definite program provided as back-

ground knowledge. They are resolved alongside the examples and the first-order background

knowledge to derive an hypothesis. Meta-rules act as program templates describing the form

of clauses permitted in hypothesised programs. In this sense, meta-rules define the hypothesis

language and in turn the hypothesis space. The use of meta-rules clarifies the declarative bias

being employed and characterise MIL as a declarative Machine Learning approach [De Raedt,

2012]. The logical formalisation of meta-rules provides the ability to reason about them [Crop-

per and Muggleton, 2014]. Examples of usual meta-rules are shown in Table 3.1. Meta-rules

provide expressive structures which allow for the representation of complex theories. For in-

stance, a MIL learner can learn recursive theories by making use of recursive meta-rules such

as tailrec presented in Table 3.1.
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Name Meta-rule
identity P (a, b)← Q(a, b).
inverse P (a, b)← Q(b, a).
conj P (a)← Q(a), R(a).

postcon P (a, b)← Q(a, b), R(b).
precon P (a, b)← Q(a), R(a, b).
chain P (a, b)← Q(a, c), R(c, b).
tailrec P (a, b)← Q(a, c), P (c, b).
curry1 P (a, b)← Q(a, b, R).

Table 3.1: Examples of usual meta-rules. The letters P , Q, and R denote existentially
quantified variables and the letters a, b and c denote universally quantified variables. In the

following, meta-rules are treated as second-order definite programs.

The use of meta-rules leads to a more constrained and effective search. However, an appropriate

choice of meta-rules is crucial: too few meta-rules limits expressivity and might not allow for

the construction of consistent hypotheses while too many hypotheses can lead to an expensive

search. Therefore, the choice meta-rules realises a trade-off between expressivity and efficiency

and an appropriate choice of meta-rules can improve the learning performance of a MIL learner

[Cropper and Tourret, 2018].

3.3.3 Hypothesis Construction

Definition 3.4 states that hypotheses are the instantiation of meta-rules. Existentially quantified

variables in meta-rules are unified with symbols from P ∪ C. These higher-order substitutions

for existentially quantified variables in the meta-rules are called meta-substitution:

Definition 3.6 (Meta-substitution). Let M be a meta-rule. A meta-substitution for M is a

higher-order substitution for the existentially variables in M .

Meta-substitutions can be used to reconstruct the learned hypothesis as a logic program by

projecting the substitutions onto their corresponding meta-rules. This reconstitutes a first-

order definite program which is an inductive generalisation of the examples. Owing to the

existentially quantified variables in the meta-rules, the resulting first-order theories are strictly

logical generalisation of the meta-rules employed.
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Example 3.1 (Meta-Substitution). A board is a list of non-empty cells. A cell is an atom of

the form c(Rank, F ile, Color). We assume a background knowledge containing the primitives

piece/2 and white/1 and the postcon meta-rule represented in Table 3.1. We consider a set of

positive examples containing a single example E+ = {white_piece([c(1, f, w)c(6, c, b)], c(1, f, w))}

and an empty set of negative examples E− = {}. Suppose a MIL learner aims to learn a concept

white_piece/2 extracting a white piece from a board given as first argument. It can construct

the following meta-substitution for the postcon meta-rule:

{P/white_piece, Q/piece, R/white}

This meta-substitution can be translated into the following logic program by substituting it back

onto the corresponding meta-rule postcon:

white_piece(A,B) : −piece(A,B),white(B).

The construction of hypotheses as meta-substitutions is performed during the derivation of the

examples from the background knowledge. A Prolog meta-interpreter attempts to construct a

proof of each example represented as goals. A standard Prolog interpreter attempts to prove

a goal by repeatedly fetching first-order clauses whose heads unify with the given goal, and

then proving first-order body literals. Conversely, a meta-interpreter additionally can prove a

goal by fetching meta-rules whose heads unify with the given goal, before proving second-order

body literals. The meta-interpreter saves meta-substitutions generated throughout successful

proofs of the positive examples such that they can be reused in later proofs. After proving

all goals, an hypothesised program is formed from the meta-substitutions built. These saved

meta-substitutions are applied to their associated meta-rules to retrieve the learned hypothesis.

3.3.4 Predicate Invention

A characteristic feature of MIL is the support of predicate invention. Predicate invention

is the automatic introduction of new auxiliary predicates which are not part of the initial
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Background Knowledge B Positive Examples E+ Negative Examples E−

mother(i,a). grandparent(i,b). grandparent(a,b).
mother(c,f). grandparent(i,c). grandparent(b,c).
mother(c,g). grandparent(a,d). grandparent(c,d).
mother(f,h). grandparent(a,e). grandparent(d,e).
father(a,b). grandparent(a,f). grandparent(e,f).
father(a,c). grandparent(a,g). grandparent(f,g).
father(b,d). grandparent(c,h). grandparent(g,h).
father(b,e). grandparent(h,i).

Table 3.2: Learning the grandparent relation: first-order background knowledge and examples

predicate signature of B ∪ E. Predicate invention extends the learner vocabulary P . Within

MIL, predicate invention is conducted by the meta-interpreter during the construction of meta-

substitutions. The meta-interpreter automatically introduces a finite number of new higher-

order Skolem constants representing new unique predicate names. These Skolem constants

can be bounded to second-order variables in the meta-rules during the proof of the positive

examples. The meta-interpreter then constructs a definition for these otherwise uninterpreted

symbols.

Example 3.2 (Invention [Cropper and Muggleton, 2016]). Consider the set of examples and

the background knowledge containing the description of relations father/2 and mother/2 shown

in Table 3.2 and the chain and identity meta-rules represented in Table 3.1. A MIL learner

can learn the logic program below for describing the relation grandparent/2:

grandparent(A,B)← grandparent_1(A,C), grandparent_1(C,B).

grandparent_1(A,B)← mother(A,B).

grandparent_1(A,B)← father(A,B).

The predicate grandparent_1/2 is an invented predicate: it does not belong to the predicate sig-

nature of B∪E but appears in the learned hypothesis. This invented predicate has been introduced

by the meta-interpreter as a new Skolem constant, and has been bound to second-order vari-

ables in the chain meta-rule. Its definition has been constructed with meta-interpretation as the

disjunction of the predicates mother/2 and father/2. This invented predicate grandparent_1/2

represents the parent relation.
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3.3.5 Higher-order programs

MIL systems not only can learn first-order programs but also support learning of higher-order

programs. A higher-order program is a program that allows for quantification over higher-

order variables that can be bound to predicate symbols.1 Higher-order programs are learned

by making use of higher-order definitions provided as background knowledge:

Definition 3.7 (Higher-order definition [Cropper et al., 2020b]). A higher-order definition is

a set of higher-order Horn clauses where the head atoms have the same predicate symbol.

All variables in a higher-order definition are universally quantified. However, by opposition

with first-order definitions, variables may be first-order or second-order and are universally

quantified over the set of constant symbols C or over the set of predicate symbols P :

Example 3.3 (Higher-order definition). The definition until below is a higher-order definition:

until(A,B,Cond, F )← F (A,B), Cond(B).

until(A,B,Cond, F )← F (A,C), until(C,B,Cond, F ).

Whereas the variables Cond and F are universally quantified higher-order variables, the other

variables A,B,C are universally quantified first-order variables. This higher-order definition

until/4 represents a recursive call to the action F and terminates when the condition Cond is

fulfilled.

An abstraction is a higher-order Horn clause that contains at least one atom which takes

a predicate symbol an argument. An abstractions is the use of higher-order definitions to

hide away the complexity of a program. The use of higher-order definitions provides simpler

and more compact representations of the learned theories. Therefore, the use of higher-order

definitions can reduce sample complexity and learning times and improve predictive accuracies

[Cropper et al., 2020b].

1In the following, we consider higher-order variables as second-order variables but we use the terminology
higher-order for consistency with the literature and to indicate potential extension to higher-orders.
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Example 3.4 (Abstraction). We consider a background knowledge containing the higher-order

definition until/4 presented in Example 3.3, the predicate move_up/2 which increments the

rank of a piece by one unit and rank_8/1 which holds if a piece is located on a position with

rank 8. The following abstraction describes the concept of moving up until the eighth rank is

reached for a pawn, in which case this pawn will be promoted. The last two arguments of until/4

in the abstraction below are ground to the predicate symbols rank_8/1 and move_up/2.

promote(A,B)← until(A,B, rank_8,move_up).

The use of the higher-order definition until/4 abstracts away the manipulation of board states

represented as lists. Recursion is implicit in the higher-order definition until/4. This avoids

the need to learn an explicitly recursive program for defining promote/2 and provides a more

compact definition for promote/2.

Learning of higher-order programs can be combined with predicate invention to support higher-

order predicate invention, which is the invention of predicates for use in higher-order constructs.

For instance, a MIL learner can invent functions and conditions in the higher-order definition

until/4. Meta-interpretation allows to alternate abstractions and invention to an arbitrary

depth and thus can learn nested abstractions and inventions.

3.3.6 Search Space

We describe within this Subsection properties of MIL search spaces. We first restrict the

hypothesis space to Datalog programs.

Proposition 3.1 (MIL decidable [Muggleton et al., 2015]). The MIL problem is decidable in

the case M , Bc, E+, E− are Datalog and the predicate signature P and the constant signature

C are finite.

The restriction to Datalog program allows decidability when the predicate and constant signa-

ture are finite. However, the satisfiability of a MIL problem is undecidable when C is infinite.
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We then define the restricted class of logic programs H i
j which is a subset of Datalog:

Definition 3.8 (H i
j program class [Muggleton et al., 2015]). For i, j ∈ N, the language class

H i
j contains all definite Datalog programs constructed from the predicate signature P and the

constant signature C with predicates of arity at most i and at most j atoms in the body of each

clause.

In this thesis, we mainly focus on the program class H2
2 , which consists of dyadic Datalog logic

programs with arity at most 2 and with at most 2 atoms in the body of each clause. This

restriction has several practical advantages. First, a restricted number of body literals limits

the number of possible meta-rules. Moreover, this restriction forces more prolific predicate

invention and the decomposition of hypotheses into reusable predicates. In addition, as stated

by Proposition 3.1, this restriction allows for decidability: the satisfiability of a Datalog goal

given a program belonging to the program class H2
2 is decidable when the predicate signature P

and the constant signature C are finite. It is however undecidable when C is infinite [Muggleton

et al., 2015]. Finally, the fragment H2
2 still is highly expressive: it can be shown this fragment

has Universal Turing Machine expressivity [Muggleton et al., 2015].

The following proposition provides an upper bound over the number of programs in the program

class H i
j:

Proposition 3.2 (Size of the search space in H i
j [Lin et al., 2014; Cropper and Tourret, 2018]).

Assume npred predicate symbols and m meta-rules, and i, j, n ∈ N∗. The number of H i
j programs

expressible with at most n clauses is O(mnn
(j+1)n
pred ).

Proposition 3.2 shows that the size of the search space is exponential in the number of clauses

n and polynomial in the number of meta-rules m and in the number of predicate symbols npred.

According to the Blumer bound [Blumer et al., 1989] described in Section 2.1.3, the sample

complexity is a function of the size of the search space. We can thus infer the following sample

complexity result for the program class H i
j:

Proposition 3.3 (Sample Complexity in H i
j). Assume ε > 0, δ > 0, npred predicate symbols,

m meta-rules, and i, j, n ∈ N∗. The number of training examples nex required to PAC-learn
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with error at most ε and probability at least 1− δ an hypothesis from the program class H i
j with

at most n clauses verifies:

nex ≥
1

ε
(n ln(m) + (j + 1)n ln(npred) + ln(

1

δ
) + ln(c)) with c constant

Proposition 3.3 shows that the sample complexity in the program class H i
j is polynomial in the

number of clauses and logarithmic in the number of meta-rules and in the number of predicate

symbols. In this sense, selection of appropriate meta-rules [Cropper and Tourret, 2018] and

predicate symbols [Cropper, 2020; Dumancic et al., 2021] can improve the sample efficiency.

We will see in Chapter 5 how the number of clauses in hypothesised programs can be reduced

with predicate invention, which in turn can reduce the sample complexity.

3.3.7 Metagol

Several implementations of MIL have been described in the literature. The MIL problem has

been encoded in an ASP problem for which ASP solvers attempt to find a model [Muggleton

et al., 2014; Kaminski et al., 2018]. We focus in this thesis on a Prolog implementation called

Metagol [Cropper and Muggleton, 2016].

To find an hypothesis, Metagol constructs a proof for the positive examples. It successively

considers each positive example represented with a ground atom as a goal. For each goal, it

first attempts to prove the atom considered using the background knowledge or clauses already

induced. Failing this, it unifies the atom considered with the head of a meta-rule. The body

of the meta-rule is converted to a set of atomic goals which are proved following the same

process. Thereby, Metagol explores bindings of the existentially variables in this meta-rule

to symbols from the predicate and constant signatures. The constructed meta-substitutions

for any successful proof are saved as Prolog atoms. Thus, the meta-interpreter recursively

proves a series of atomic goals by matching them against the background knowledge or the

heads of available meta-rules. For any failure, Metagol backtracks and explores alternative

choices. After proving all the positive examples, the learned hypothesis stored in the saved
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meta-substitutions is complete by construction. This resulting hypothesis is then tested against

the negative examples. If the hypothesis entails a negative example, Metagol backtracks to the

last unexplored choice point during the proof of the positive examples and resumes the search.

Otherwise, if no negative examples are covered, the hypothesis is returned. All other consistent

hypotheses can be generated by further backtracking through the SLD-proof space: the search of

Metagol is ordered via Prolog’s procedural semantics. Completeness of SLD-resolution ensures

that all hypotheses consistent with the examples can be constructed.

Metagol learns optimal hypotheses. It uses iterative deepening over the number of clauses to

ensure the first hypothesis returned contains the minimal number of clauses. The search starts

at depth 1. For each depth i, Metagol can build hypotheses with at most i clauses. If an

hypothesis with at most i clauses which is consistent with the examples exists, it is returned.

Otherwise Metagol continues to the next depth i + 1 until the maximum number of clauses

allowed by the user is reached. In addition, the bound on the number of clauses puts a limit on

the number of Skolem constants introduced which is the number of invented predicates allowed.

At each depth i, Metagol augments P with up to i−1 new predicate symbols which are named

as extensions of the target predicate name [Muggleton et al., 2015].

Metagol supports non-observable predicate learning [Moyle and Muggleton, 1997; Muggleton

and Bryant, 2000; Law et al., 2021], which is the induction of definitions for predicates other

than the predicates represented in the examples. By opposition, in observational predicate

learning, the examples and the target hypotheses define the same predicate. Metagol addi-

tionally supports multi-predicate learning which is the simultaneous learning of definitions of

several predicates from a mixture of examples of these different predicates. These predicates

may be inter-dependent. Metagol also can learn mutually recursive programs. For instance, it

can learn the definition of an even number by inventing and learning the definition of an odd
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number [Muggleton et al., 2015]:

even(0).

even(A) : −successor(A,B), even_1(B).

even_1(A) : −successor(A,B), even(B).

Although Metagol supports both non-observable and multi-predicate learning, we focus in our

experiments on observable and single predicate learning. We leave experimental evaluations of

extensions to our contributions to these settings as future work.

3.4 Bayesian MIL

We describe within this section how MIL can be extended to implement a Bayesian posterior

distribution over the hypothesis space.

3.4.1 Stochastic Refinement

A downward refinement operator is a function which maps a clause to a set of specialisations

of this clause:

Definition 3.9 (Downward Refinement Operator [Shapiro, 1991; Nienhuys-Cheng, 1997]). Let

〈G,�〉 be a quasi-ordered set of clauses. A downward refinement operator is a function ρ : G→

2G, such that, for all C ∈ G ρ(C) ⊆ {D | C � D}. The set of one-step refinements ρ1 and

n-step refinements ρn of C ∈ G are:

ρ1(C) = ρ(C)

ρn(C) = {D | ∃E ∈ ρn−1(C) such that D ∈ ρ(E)} for n ≥ 2

The set of refinements ρ∗ of C ∈ G is the Kleene closure of the downward refinement operator
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ρ applied to C:

ρ∗(C) = ρ1(C) ∪ ρ2(C) ∪ ...

A refinement operator induces a refinement graph: the refinement graph is a directed graph

which has the members of G as nodes and which contains an edge from C to D if D ∈ ρ(C).

Moreover, according to Definition 3.9, the refinement of a clause is a set of clauses. Then the

stochastic refinement of a clause is defined as a probability distribution over this set of clauses:

Definition 3.10 (Downward Stochastic Refinement Operator [Tamaddoni-Nezhad and Mug-

gleton, 2011]). Let 〈G,�〉 be a quasi-ordered set of clauses and ρ downward refinement operator.

A downward stochastic refinement operator is a function σ : G→ 2G×[0,1] such that, for C ∈ G:

σ(C) = {〈Di, pi〉 | Di ∈ ρ(C), pi ∈ [0, 1] and
|ρ(C)|∑
i=1

pi = 1}

A σ-chain from C ∈ G to D ∈ G is a sequence {C0, C1, ...Cm} with C = C0 and Cm = D such

that for all 1 ≤ i ≤ m, 〈Ci, pi〉 ∈ σ(Ci−1). The probability of this σ-chain is
∏m

i=1 pi. Then, the

n-step stochastic refinements of C ∈ G is defined as:

σn(C) = {〈Di, pi〉 | Di ∈ ρn(C), pi =
∑
x∈X

p(x) where X is the set of σ-chain from C to Di}

The stochastic refinements σ∗ of a downward refinement operator ρ is defined as:

σ∗(C) = {〈Di, pi〉 | Di ∈ ρ∗(C), pi ∈ [0, 1] and
|ρ∗(C)|∑
i=1

pi = 1}

The n-step stochastic refinements of a clause represent a probability distribution. This proba-

bility distribution can be viewed as a prior in a stochastic ILP search.
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3.4.2 Bayes Theorem

In the context Bayesian MIL, we consider a downward refinement operator ρ which consists of

the selection of a consistent meta-substitution followed by its abduction. Then, the downward

stochastic refinement operator σ with respect to a meta-interpreter involves making selections

according to a probability distribution over the meta-substitutions [Muggleton et al., 2013]. In

this case, the prior of an hypothesis H relative to the background knowledge B is defined from

the stochastic refinements σ∗ as:

p(H|B) =
∑

〈H,p〉∈σ∗(¬B)

p

The likelihood of the examples E with respect to the background knowledge B and hypothesis

H is evaluated as:

p(E | B,H) =

 1 if B,H |= E

0 else

Bayes’ theorem describes how a prior probability, which represents the initial degree of belief

one has in a set of possible hypotheses, becomes a posterior probability as the result of observing

some evidence:

p(H|B,E) =
p(H | B)p(E | B,H)

p(E | B)

The denominator p(E | B) does not rely on a choice of hypothesis and thus can be assimilated

to a normalisation constant and be ignored when maximising the posterior.

Some learners usually are employed to make predictions given a posterior distribution. A

Gibbs learner outputs a consistent hypothesis sampled according to the posterior distribution.

A MAP (Maximum A Posteriori) learner outputs an hypothesis H with maximum posterior

probability: H ∈ argmaxH p(H | B,E). A Bayes learner classifies unseen instances as the

averaged combination of the predictions of all consistent hypotheses weighted by their posterior



58 Chapter 3. Theoretical Framework

probability. A Bayes’ prediction of instance x is defined as:

bayes(x) =

 1 if
∑

H p(H | B,E) ≥ 0.5

0 else

A Bayes learner is an optimal prediction learner. A Gibbs learner has an expected error of at

most twice that of a Bayes optimal learner [Haussler et al., 1994]. In Bayesian MIL, stochastic

refinement is used to randomly sample consistent hypotheses which are used to approximate

Bayes’ prediction.

3.4.3 MetaBayes

MetaBayes [Muggleton et al., 2013] is a Bayesian MIL learner. It evaluates an approximation

of Bayes’ prediction based on averaging over the posterior probabilities of a set of sampled con-

sistent hypotheses. MetaBayes samples consistent hypotheses using regular sampling. Regular

sampling reproduces the effects of sampling without replacement, it limits the number of dupli-

cates while maintaining a good sampling efficiency. Regular sampling works as follows. A set of

probability fractions {f1, ..., fK} is generated from the first K integers and with the following

two properties: fractions generated are evenly distributed in [0, 1] while containing no duplicates

and the set of probability fractions is isomorphic to N for K infinite. We consider the derivation

tree to be order left-to-right in SLD-order. Hypotheses are leaf nodes within this tree and each

node corresponds to the choice of a meta-substitution. We consider the cumulative posterior

probability of a leaf node to be the sum of posterior probabilities of hypotheses preceding it,

that are hypotheses on its left in the tree. Samples are generated from this tree and following

the probability fractions {f1, ..., fK}: for each fraction fi, we return the rightmost hypothesis

Hi such that it has cumulative posterior probability at most fi:
∑i

k=1 p(Hk|B,E) ≤ fi. This

hypothesis Hi is identified as follows. Branches are assigned probability intervals [min,max]

corresponding to the cumulative posterior probability associated with hypotheses found in the

sub-tree under this branch. Starting at the root of the tree, the branch whose cumulative pos-

terior probability interval [min,max] verifies min ≤ fi ≤ max is chosen. Within the resulting
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sub-tree, we repeat by updating fi to (fi −min)(max −min) and selecting the sub-tree con-

taining the updated probability fi. This process is terminated when a leaf node is reached and

the hypothesis corresponding to this leaf node is returned. At the end, regular sampling pro-

duces a sample set representative of the version space due to the evenly distributed sequence of

fractions. MetaBayes supports sampling of hypotheses consistent with a given set of examples

and background knowledge, and can be used to implement approximated Bayes’ prediction.

3.5 Summary

In this Chapter, we have introduced the theoretical framework used throughout this thesis. We

have used standard logical programming terminology. We have presented the MIL theoretical

framework and its extension to Bayesian MIL. While the previous Chapters 2 and 3 have

reviewed existing work, the following Chapters 4, 5 and 6 will introduce our contributions. The

following Chapter presents an extension of Bayesian MIL with a method for efficiently building

training sets with active learning for automated experiment selection.



Chapter 4

Active Bayesian Meta-Interpretive

Learning

In this Chapter, we investigate Subthesis S.1 and introduce a method for revising the instance

space in Bayesian MIL with active learning. This Chapter is based on the work published in

[Hocquette and Muggleton, 2018].

4.1 Introduction

Once a honeybee has found a rich source of pollen, it shares its location with other members of

the colony by executing a particular figure 8-movement called waggle dance. The bee orients

its dance such that its direction indicates the location of the food source relative to the sun.

Moreover, the duration of the waggle encodes the distance to flowers yielding nectar and pollen

[Von Frisch, 1967]. This dance guides other bees and thus enhances the efficiency of the colony’s

foraging strategy.

More broadly, strategies are general programs aimed at achieving a goal, and that can provide

plans for a multiplicity of initial states. We consider the task of learning agent strategies.

However, when a scientist models animal behaviours or other strategies, the learning process

generally requires the design and execution of many experiments. An experiment is the set-up

60
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q1 q0 q1

0/1
0

0

waggle dance

waggle dance

(a) First observation: the bee starts from the hive with no
weight carried and ends up at the flower carrying pollen. This

observation is labelled as positive.

Hypothesis 1 f(A,B):-f_1(A,C),grab(C,B).
f_1(A,B):-until(A,B,at_flower,move_right).

Hypothesis 2
f(A,B):-f_1(A,C),grab(C,B).

f_1(A,B):-until(A,B,at_flower,f_2).
f_2(A,B):-ifthenelse(A,B,waggle_east,move_right,move_left).

(b) Two competing hypotheses consistent with the first observation (Figure 4.1a)

q1 q0 q1

0/1
0

0

waggle dance

waggle dance

(c) Second experiment: it is discriminative between the
competing hypotheses of Figure 4.1b, the knowledge of its label,

no matter its value, will eliminate one of the competing
hypotheses.

Figure 4.1: Observations of a bee behaviour

of an environment followed by the empirical observation of an outcome. Experiments allow for

the arbitration of competing hypotheses and for knowledge acquisition. Experiments have an

associated cost: their set-up and execution are resource exhausting and time-consuming. To

that extent, learning efficiency relies on the number of experiments performed. We investigate

in this work how much experimental cost can be reduced with active learning to learn agent

strategies. An active learner is allowed to ask queries during the learning process. It chooses

the next experiment to perform such that it is maximally discriminating between remaining

competing hypotheses.

In Section 4.6, we learn a general strategy for a bee to find pollen in an environment. Learnt

strategies are logic programs built from observations of bee behaviour. Observations are la-

belled as positive if the goal is fulfilled and as negative otherwise. Figure 4.1a represents a

positive observation: the waggle dance indicates that a flower is at the right of the hive and the

bee has successfully grabbed pollen thus the goal is fulfilled. Several hypotheses can be inferred

from this observation, among them the two represented in Figure 4.1b. To discriminate be-



62 Chapter 4. Active Bayesian Meta-Interpretive Learning

tween these two competing hypotheses, several experiments could be performed. One of these

experiments is represented on Figure 4.1c: the flower now is on the left, which is indicated by

the waggle dance. The first hypothesis predicts a negative outcome for this experiment while

second one predicts a positive outcome. Therefore, the knowledge of the label of this experi-

ment, regardless of its value, would eliminate one of these two hypotheses, which makes it an

informative query.

MIL supports predicate invention, the learning of recursive programs [Muggleton et al., 2014;

Muggleton et al., 2015] and the learning of higher-order programs [Cropper et al., 2020b] thus

is a suitable framework for learning agent strategies. In addition, in real-world situations,

strategies should ideally be resource-efficient to be beneficial for agents. Therefore, we implent

a prior which introduces a bias toward hypotheses with lowest complexity. More specifically,

our framework is based upon Bayesian MIL, which is an extension of MIL that allocates a

Bayesian prior distribution over the hypothesis space using stochastic refinement [Muggleton et

al., 2013]. To the best of our knowledge, Bayesian MIL is the only ILP framework that makes

explicit distributional assumptions over the hypothesis space. Moreover, Bayesian MIL allows

for efficient sampling of consistent competing hypotheses according to their posterior distribu-

tion. We extend Bayesian MIL into Active Bayesian MIL. Active Bayesian MIL additionally

supports automated experiment selection based on active learning. We demonstrate Active

Bayesian MIL can achieve lower sample complexity compared to Bayesian MIL.

Active Bayesian MIL works as follows. Given a set of labelled observations and some back-

ground knowledge, a set of consistent hypotheses are built. A Bayesian posterior distribution

over the hypothesis space is defined from likelihood of the labelled observations and the hy-

potheses prior. The learner computes the entropy of possible experiments from the proportion

of hypotheses weighted by their posterior that predicts a positive outcome for this experiment.

An experiment with maximum entropy is selected: it is maximally discriminative between the

remaining competing hypotheses and thus achieves the highest shrinkage of the version space.

The learner observes the label of this experiment returned by an oracle. More iterations of this

process are repeated during which more experiments are selected until convergence.
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Specifically, the contributions of this Chapter are as follows. We introduce a framework, Active

Bayesian MIL, which features automated experiment selection with active learning for learning

efficient agent strategies with reduced cost of experimentation (Section 4.3). We theoretically

compare the entropy of the instance selected between an active and a passive learner (Sec-

tion 4.4). We provide and describe an implementation of the Active Bayesian MIL framework

(Section 4.5). We experimentally demonstrate over two domains that Active Bayesian MIL

converges faster toward agent efficient strategies than a passive learner in the same conditions

(Section 4.6). Our experiments consider the task of learning bee strategies and learning deter-

ministic Finite State Automata (FSA): our results demonstrate that the number of experiments

to perform to reach an arbitrary accuracy level can at least be halved.

4.2 Related Work

4.2.1 Automated Scientific Discovery

Scientific discovery has been defined as the generation of novel, interesting, plausible, and

intelligible knowledge about objects of study in science [Valdés-Pérez, 1999]. The automation of

scientific discovery through the development of algorithms has long been of interest to accelerate

scientific progress [King et al., 2009; Gil et al., 2014]. Early work focused on automating the

generation of hypotheses identifying molecular structure to explain the data produced by a

mass spectrometer [Buchanan et al., 1969]. A later system [Langley et al., 1987] can rediscover

numeric scientific laws. Prodigy [Carbonell and Gil, 1990] implements a learning cycle for

planning and problem solving. It refines its domain knowledge through experimentation.

In particular, ILP has been demonstrated suitable for designing systems capable of acquir-

ing scientific knowledge. The Robot Scientist [Bryant et al., 2001; King et al., 2004; King et

al., 2009] is a closed loop logic-based Machine Learning system for fully automated Scientific

Discovery and aimed at the determination of the function of yeast genes. It automatically

originates hypotheses with ILP, devises experiments to test these hypotheses, executes these
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experiments using an automated robotic system and interprets the results to falsify hypothe-

ses inconsistent with the data observed. The Robot Scientist can autonomously propose and

perform a sequence of experiments which reduces the expected cost of experimentation for

converging upon an accurate hypothesis. However, this work was limited to finite hypothesis

spaces and the demonstration in [King et al., 2004] focuses on the abduction of single Prolog

facts. We extend the class of learnable concepts to strategies involving predicate invention,

recursion and higher-order programs in possibly infinite hypothesis spaces.

4.2.2 Active ILP

As described in Section 2.1.3, active learning is a framework in which the learner can query

the label of unlabelled data of its choice to an oracle. An active learner aims to learn a

model with high performance while minimising the cost of labelling data. While active learning

was initially applied to classification tasks, active learning has been combined with ILP in

several ways to learn more complex theories. For example, an active ILP learner has been

designed for two non-classification tasks in natural language processing: semantic parsing and

information extraction [Thompson et al., 1999]. LOGAN-H [Arias et al., 2007] learns first-

order function-free Horn expression from interpretations by asking equivalence queries and

membership queries. Active ILP has also been applied to identifying code search patterns and

retrieving relevant code examples from corpus of data [Sivaraman et al., 2019]. In the context of

relational reinforcement learning, active exploration in relational worlds has been investigated

[Lang et al., 2010; Rodrigues et al., 2011]. Conversely, this work integrates active learning with

Bayesian MIL to devise a sequence of experiments for learning efficient agent strategies with

reduced experimental costs.

4.2.3 Learning Grammars

The computational analysis of grammar learning has shown there is a polynomial time algorithm

using both membership and equivalence queries [Angluin, 1987]. A polynomial time algorithm
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for learning a subclass of Context-Free Grammars from positive examples of structural data has

been described [Sakakibara, 1990]. However, by opposition with our approach, this algorithm

cannot make use of negative experimental observations. Moreover, our approach is more general,

it is not limited to grammars but can learn a broader class of hypotheses including agent

strategies. MIL [Muggleton et al., 2014] and Bayesian MIL [Muggleton et al., 2013] have been

successful at learning regular and context-free grammars from positive and negative examples

due to their ability to support predicate invention and learning of recursion. However, these

works did not featured automated experiment selection. Subsequent works have focussed on

related language classes such as learning semantic conditions on Context-Free Grammars [Law

et al., 2019].

4.3 Theoretical Framework

We consider a probability distribution DX over the instance space X and a probability distri-

bution DH over the hypothesis space H. We assume that the target hypothesis H is drawn

from H according to DH.

4.3.1 Complexity of an Hypothesis

Hypotheses from H differ by their complexity. The complexity of hypotheses H ∈ H usually

is evaluated as the textual complexity l(H) which measures the length of the logic program

H. In the following, we evaluate the length of H as the number of clauses in H. The idea of

learning minimal textual complexity hypotheses relies on Occam’s principle described in Section

2.1.4. However, textually smaller programs are not necessarily the most desirable [Domingos,

1999]. Therefore, our framework considers an explicit prior distribution capable of incorporating

domain knowledge. For instance, a desirable property of strategies is their efficiency. Therefore,

we also evaluate the complexity of an hypothesis in terms of its resource complexity [Cropper

and Muggleton, 2015]. The resource complexity r(H) of an hypothesis H ∈ H is the sum of

the action costs in applying the hypothesis H to the training examples. For a strategy, it is
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the cost of transforming each initial training state into its corresponding final training state.

Resource complexity can be viewed as a generalisation of time complexity, for which time is

considered as a particular resource. In the following, we combine the textual complexity l(H)

and the resource complexity r(h) into an overall complexity c(H) defined as:

c(H) = l(H) + r(H) (4.1)

4.3.2 Bayesian Prior Distribution

We consider the Bayesian MIL framework [Muggleton et al., 2013] described in Section 3.4.

Bayesian MIL implements a posterior distribution over the hypothesis space. This posterior

is evaluated with Bayes’ theorem from the prior and the likelihood. The likelihood is evalu-

ated from the consistency of hypotheses with the training set. The prior is defined from the

stochastic refinements with respect to the meta-interpreter and given the background knowl-

edge B. The refinement operator consists of the selection of a consistent meta-substitution

followed by its abduction. Our prior distribution encodes a preference for hypotheses with the

lowest complexity. The complexity is defined as in Equation 4.1, from the number of stochastic

refinements and the resource complexity. This prior results in a bias over the hypothesis space

toward shortest and more efficient strategies. Our Bayesian prior probability is defined for any

hypothesis H ∈ H as follows, 1
a

=
∑∞

i=1
1
i2

= π2

6
being a normalisation constant:

DH({H | c(H) = k}) =
a

k2
(4.2)

4.3.3 Active Learning

A set of N instances is initially sampled from the instance space X according to DX . At

each iteration m > 0, the active learner conducts an experiment in which it chooses the next

instance xm among this set and observes its label returned by an oracle. This information helps

to discriminate between the current competing hypotheses since it rules out some proportion of
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the version space Vm that is not consistent with it. We call DH(Vm) the weight of the version

space at the iteration m. We measure the shrinkage of the hypothesis space with the number
DH(Vm+1)
DH(Vm)

which represents the reduction ratio of the version space after the query of the label

of the mth instance. We associate each sampled instance xm with a probability p(xm, Vm) given

the version space Vm:

p(xm, Vm) =
min(DH({H ∈ Vm | H(xm) = 1}), DH({H ∈ Vm | H(xm) = 0})

DH(Vm)

This probability represents the proportion of hypotheses which predict the minority outcome.

By opposition with cover set approaches, the true label is unknown. This probability value

represents the minimal reduction ratio over the version space Vm produced by the query of the

instance xm. We define the entropy of xm as:

ent(p(xm, Vm)) = −p(xm, Vm)log(p(xm, Vm))− (1− p(xm, Vm))log(1− p(xm, Vm)) (4.3)

From an information-theory point of view, the entropy of p(xm, Vm) is the expected information

gain EHvDH [I(xm, Vm, H)] following the knowledge of the label of xm [Haussler et al., 1994]:

EHvDH [I(xm, Vm, H)] = ent(p(xm, Vm))

Instances with maximal entropy are maximally informative on expectation from the learner’s

point of view. These instances are the expected most discriminative given the current version

space. Therefore, as noted in [Mitchell, 1978], an optimal query strategy is to select an instance

covered by exactly half of the version space. In this case, the knowledge of its label, no matter

its value, will halve the size of the version space. Therefore, the query strategy chosen is to

select an instance xm for which p(xm, Vm) is the closest to 1
2
, that is for which the entropy

ent(p(xm, Vm)) is maximal:

xm = argmax
x

(ent(px, Vm))

Geometrically speaking, them+1 first instances Xm = {x0, ..., xm} generate a partition TXm,DH

of size at most 2m+1 over the hypothesis space. The expected cumulative information gain
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Figure 4.2: Diagram of Active Bayesian MIL’s learning framework

I(Xm, H) following the knowledge of labels of the instances Xm = {x0, ..., xm} is the entropy

of this partition weighted with the prior distribution:

EHvDH [I(Xm, H)] = ent(TXm,DH)

The entropy measures the uncertainty over the space of hypotheses. Thus, the information

is maximised when the prior distribution tends to give equal weight to each element of the

partition.

4.3.4 Learning Protocol

The learning protocol is summarised in Algorithm 4.1 and Figure 4.2. It represents how the

learner acquires information. First, a set SX of N instances is randomly sampled from the

instance space X according to DX . The training set is initialised with one positive instance

x0 randomly selected from this set SX . This ensures that the learner can construct hypotheses

since it can not learn from negative examples only. Then, a set SH of K hypotheses consistent

with the training set is sampled from H according to the posterior distribution. The entropy of

each instance from SX is computed from the set of sampled hypotheses SH. An instance with

maximal entropy in SX is selected. Its label is provided by the oracle O and this instance thus

labelled is added to the training set. This process is repeated until the maximum number of

iterations is reached, after which the hypothesis with the highest posterior is returned.
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Algorithm 4.1 Active Bayesian MIL
Inputs: oracle O, integers N , K and M , instance space X and hypothesis space H, prior DX
and DH
Output: logic program hypothesis H
1: Sample a set SX of N instances from X according to DX
2: Initialisation: randomly select a positive initial instance, set m=0
3: while the number of experiments m is lower than M do
4: Sample a set SH of K hypotheses from H according to the posterior distribution
5: Compute the entropies of instances from SX given SH
6: Select an instance xm with maximal entropy from SX
7: Query the label of xm to the oracle O and add it to the training set
8: m=m+1
9: end while
10: return the hypothesis H with the highest posterior from the sampled set SH

4.4 Theoretical Analysis

We theoretically evaluate within this section the instantaneous expected gain, that is the ex-

pected reduction of the version space Vm at some iteration m for a target class H. As explained

in the previous section, the expected information gain is the entropy of the instance selected.

The entropy is computed from the probability p(xm, Vm) which represents the minimal reduction

ratio.

Lemma 4.1 (Probability of selecting an instance with maximal entropy). A set of N > 0

instances SX is randomly sampled from the instance space X . The active learner selects an

instance xi with maximal entropy among this sample set SX . Then, the probability for an active

learner of selecting an instance with maximal entropy is N times the one of a passive learner.

Proof. The entropy is a monotonic function of the minimal reduction ratio. We consider an

arbitrary distribution over X for the minimal reduction ratio. This distribution is bounded in

[0, 1
2
]. We take 1

N
> ε > 0 and pε is the probability value such that an ε-proportion of the

instance space X has a reduction ratio greater or equal to pε. The instance selected by the

active learner has a minimal reduction ratio pi < pε if and only if every instance from the

sample set has a minimal reduction ratio smaller than pε:

p(pi < pε) = p(p1 < pε, ..., pN < pε) =
N∏
k=1

p(pi < pε) = (1− ε)N (4.4)
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Then, the probability for an active learner to select an instance with minimal reduction ratio

at least pi is:

pactive(pi ≥ pε) = 1− (1− ε)N = 1−
N∑
k=0

(
N

k

)
(−ε)k = Nε+ o(ε) (4.5)

By comparison, the probability for a passive learner to select an instance with minimal reduction

ratio at least pε simply is:

ppassive(pi ≥ pε) = ε (4.6)

Therefore, the probability of selecting an instance with maximal entropy is N times the one

of a passive learner in the same conditions, where N is the number of unlabelled instances

available.

Lemma 4.1 is applicable to any active learner and is not restricted to ILP learners. However, in

the following, our focus will be restricted to a MIL learner; our implementation and experiments

are specific to MIL. We are interested in MIL for its ability to learn complex hypotheses which

makes this framework suitable for learning agent strategies.

4.5 Implementation

4.5.1 Sampling a Set of Hypotheses

To cope with very large or potentially infinite hypothesis spaces, a set of consistent hypotheses

is sampled at each iteration. This sample set is used both to approximate Bayes’ prediction

and to evaluate the entropies. Hypotheses are sampled with regular sampling [Muggleton et

al., 2013]. To ensure the sample set of hypotheses is not empty, we use dynamic sampling.

A set of K hypotheses is sampled at each iteration, this sample size is doubled until at least

one consistent hypothesis is found. First, a set of K unique and evenly distributed probability

fractions is generated. For each fraction fi, a sample hypothesis Hi is selected as a tree leaf

and by following a path in the derivation tree and such that
∑i

k=1 p(Hk | B,E) ≤ fi. If Hi is



4.6. Experiments 71

inconsistent with the training examples, it is discarded. If all sampled hypotheses have been

discarded, a new set of hypotheses is sampled from the next K natural numbers, and so forth

until at least one consistent hypothesis is returned. After removing potential duplicates, this

sampled set of hypotheses is used to compute the entropies of sampled instances.

4.5.2 Computing the Entropies

In the next step, entropies are computed from the sampled hypotheses. For every candidate

instance, we compute the proportion of sampled hypotheses weighted by the hypotheses prior

that predict a positive label. The entropies are derived from this probability as per Equation

4.3. An instance with maximal entropy is selected, with ties broken at random.

4.6 Experiments

4.6.1 Experimental Hypothesis

This Section describes two experiments which evaluate the performance of Active Bayesian

MIL over the speed of convergence when learning efficient agent strategies1. For the sake of

comparison, we consider as baseline a passive learner which randomly selects one instance at

each iteration. We investigate the following Experimental Hypothesis:

Experimental Hypothesis 4.1. Active Bayesian MIL can converge to efficient agent strate-

gies with a smaller sample complexity than Passive Bayesian MIL.

We associate to the previous Experimental Hypothesis the following Null Hypothesis that we

will test:

Null Hypothesis 4.1. Active Bayesian MIL can not converge to efficient agent strategies with

a smaller sample complexity than Passive Bayesian MIL.
1The code for reproducing the experiments is available at https://github.com/celinehocquette/

Bayesian-MIL-active-learning.git

https://github.com/celinehocquette/Bayesian-MIL-active-learning.git
https://github.com/celinehocquette/Bayesian-MIL-active-learning.git
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Experiment Name Meta-rule

1
acceptor P (a, b)← eq(a, b).

delta P (a, b)← zero(a, c), Q(c, b).
P (a, b)← one(a, c), Q(c, b).

2
chain P (a, b)← Q(a, c), R(c, b).
curry2 P (a, b)← Q(a, b, R, S).
curry3 P (a, b)← Q(a, b, R, S, T ).

Table 4.1: Meta-rules used in the experiments: the letters P ,Q, R, S and T denote
existentially quantified higher-order variables and the letters a, b, c universally quantified

first-order variables.

one([1|T],T).
zero([0|T],T).

eq(A,A).

Table 4.2: Learning regular grammars: background knowledge

4.6.2 Material and Methods

Learning Regular Grammars The first experiment considers the task of learning regular

grammars. Regular grammars are equivalent to FSA. Generally speaking, FSA represent se-

quences of actions depending on a sequence of events and an input state. Thus, they consist

in compact ways of representing strategies. Our experimental material and methods are in-

spired from [Muggleton et al., 2014]. We consider an alphabet Σ = {0, 1}. Let ν be a set of

non-terminal symbols disjoint from Σ. We call λ the empty string. A grammar is a pair (s, R)

consisting of a start symbol s and a finite set of production rules R. A grammar is regular

if contains only production rules of the form S → λ or S → aB where S,B ∈ ν and a ∈ Σ.

The meta-rules provided are acceptor and delta represented in Table 4.1, they represent these

allowed form of production rules. As shown in Table 4.1, these meta-rules for regular grammars

can be expressed with the chain and identity meta-rules only which are usual meta-rules repre-

sented in Table 3.1. The background knowledge is represented in Table 4.2a: these predicates

parse letters from the alphabet. Target grammars are generated with Metagol from a set of

sequences regularly sampled from Σ∗, half labelled as positive and half as negative. The number

of states n ≥ 3 is generated according to an exponential decay distribution with mean 4. A

new number of states is generated following the same process to bound the search space for

the learner. We add a constraint to Metagol to ensure target grammars are deterministic. We
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q0(A,B):-zero(A,C),q1(C,B).
q0(A,B):-one(A,C),q0(C,B).
q1(A,B):-zero(A,C),q0(C,B).
q1(A,B):-one(A,C),q1(C,B).

q0(A,B):-eq(A,B).

Hypotheses generator: 
sampling a set of 

consistent hypotheses

Experiment selectionResults analysis
Experiment realisation

Final 
hypothesis

translator computation of the 
entropies

Background 
knowledge 

Initial example

q0 q1q0

0

0

11

Figure 4.3: Example of target hypothesis: the parity grammar. q0 and q1 are non-terminal
symbols and A,B,C are first-order variables.

additionally require target grammars to have a generality g(H) = DX ({x ∈ X | H(x) = 1})

verifying 1
3
< g(H) < 2

3
such that the initial probability for an instance to be positive is about

1
2
. This also ensures that trivial grammars are not considered. The generality of hypotheses is

measured against a set of 40 new regularly sampled instances. These steps are repeated until a

grammar with generality verifying 1
3
< g(H) < 2

3
is found. An example of a target hypothesis

and its corresponding automaton are represented on Figure 4.3. This example target hypothesis

is the parity grammar: it accepts sequences with an even number of 0 and any number of 1.

The complexity of an hypothesis is set to its length l(H) measured as its number of clauses and

the prior is computed as 1
l(H)2

. For each run, a pool of 150 training instances are initially regu-

larly sampled from Σ∗. A threshold on the probability fraction used for sampling is randomly

generated for each instance, thus their length is bounded. Another 50 instances are similarly

sampled for testing. A time-out is set to 10 minutes for each call to the hypothesis generator. A

singleton set containing the empty hypothesis is output if no consistent hypotheses are sampled

within the time-out. At each iteration, 50 hypotheses are regularly sampled. The accuracy is

measured as the average accuracy of all consistent sampled hypotheses over the testing set.

Results have been averaged over 50 trials.

Learning a Bee Strategy The second experiment considers the task of learning an agent

strategy. The world is a one-dimensional space of size 10. The state of the world is described

as a list of facts. Fluents are monadic predicates which verify conditions over a situation.

The available fluents are at_hive/1, at_flower/1 and waggle_east/1, they all have a cost of

0. Actions are dyadic predicates that modify the state of the world. The bee can perform
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Name Higher-order definition

until until(a, b, Cond, Func)← Func(a, b), Cond(b).
until(a, b, Cond, Func)← Func(a, c), until(c, b, Cond, Func).

ifthenelse Ifthenelse(a, b, Cond, Then,Else)← Cond(a), Then(a, b).
Ifthenelse(a, b, Cond, Then,Else)← Else(a, c), eq(c, b).

Table 4.3: Higher-order definitions used in the bee experiment. The symbols Cond, Func,
Then, Else denote existentially quantified higher-order variables. The letters a, b and c

denote universally quantified first-order variables. The predicate eq/2 holds when equality
between its two arguments.

f(A,B):- f_1(A,C),grab(C,B).
f_1(A,B):- until(A,B,at_flower,f_2).

f_2(A,B):- ifthenelse(A,B,waggle_east,move_right,move_left).

Table 4.4: Target hypothesis for the bee experiment

the following primitive actions: move_right/2, move_left/2, grab/2. Each of them costs one

unit of energy. We allow the use of the two higher-order definitions until/4 and ifthenelse/5.

These higher-order definitions are represented in Table 4.3. The higher-order definition until/4

repeatedly applies a dyadic action Func and terminates when a monadic condition Cond is

fulfilled. The higher-order definition ifthenelse/5 expresses a choice between the dyadic actions

Then and Else based upon the realisation of the monadic condition Cond. These higher-order

definitions can be expressed with variants of the chain, precon and postcon meta-rules only as

shown in Table 4.3. The meta-rules provided to the learner in this experiment are presented in

the Table 4.1. They are the usual chain meta-rule and the meta-rules curry2 and curry3. These

variants of the curry meta-rule are necessary to interpret higher-order definitions [Cropper et

al., 2020b]. For any hypothesis H with length l(H), the resource complexity r(H) is measured

against the labelled examples, and the prior of H is then defined as 1
l(H)+r(H)

. A clause bound

over the length of hypotheses is set to 3. The hive is located in the middle position of the

environment. A flower is positioned in the environment and a waggle dance indicates whether

it is east or west of the hive. In the initial state, the bee is at the hive with no pollen carried.

It has some amount of energy randomly generated between 0 and 30. In the final state, it is

on the flower with zero or one unit of pollen carried. Positive examples are pairs of states for

which the task of finding pollen is fulfilled and with a positive amount of energy in the final

state. Negative examples are pairs of states for which the task is not fulfilled or resulting in
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Figure 4.4: Learning regular grammars with Active Bayesian MIL: comparison between active
and passive learning; the convergence is faster for active learning.

a strictly negative amount of energy in the final state. We learn the strategy introduced in

Section 4.1 and represented in the Table 4.4. This strategy describes a honeybee behaviour

for finding pollen in an environment, starting from the hive and following information given

by a waggle dance. This strategy states that until a flower yielding pollen is reached, if the

waggle dance indicates the location of a food source at the east of the hive, then the bee should

move toward the right and otherwise it should move toward the left. Once at the flower, the

bee grabs pollen. Pools of training instances and testing sets are respectively made of 20 and

40 examples, half positive and half negative. Results have been averaged over 20 trials. The

hypothesis space being sparse, we sample 2000 hypotheses at each iteration.
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Figure 4.5: Learning a bee strategy with Active Bayesian MIL: comparison between active
and passive learning; the convergence is faster for active learning.

4.6.3 Results

Results are presented on Figures 4.4 and 4.5. The number of iterations on the x-axis is the

number of training examples queried. Learning time is around a few seconds per iteration

for the bee experiment. The entropy of the instance selected is represented on Figures 4.4a

and 4.5a. The entropy is smaller and less regular for passive learning and higher for active

learning, especially for a small number of iterations. In both cases the entropy is globally
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Accuracy Active learning Passive learning
0.75 5 12
0.80 7 15
0.85 11 22

(a) FSA

Accuracy Active learning Passive learning
0.80 2 3
0.90 3 6

(b) Bee experiment

Table 4.5: Number of iterations required to reach some accuracy levels for active and passive
learning. These results suggest that experimental costs can be halved with active learning.

decreasing as the version space shrinks: it is less likely to find maximally informative instances

in the sampled pool as the set of informative instances shrinks with the version space size. The

difference between the two curves, blue and green, represents the gain over the reduction of the

version space between active and passive learning. This difference weakly supports Lemma 4.1

although we would need to directly observe the probability of sampling instances with maximal

entropy to experimentally verify Lemma 4.1.

The number of sampled hypotheses is represented on Figure 4.4b and 4.5b: it is decreasing

with the number of iterations, eventually converging. The number of consistent hypotheses is

smaller for active learning compared to passive learning. It represents the size of the version

space, which shrinks faster for active learning since instances selected have higher entropy thus

are more discriminative. In both cases, the decay rate gets smaller as the entropy drops. The

number of hypotheses does not decrease by a factor of two as in the ideal case, even for active

learning since the entropy of the instance selected generally is smaller than 1. Indeed, the

existence of an instance with maximal entropy 1 is not guaranteed, and the selection of a high

entropy instances depends on the size of the sampled pool as stated in Lemma 4.1.

The complexity of the MAP hypothesis (Figure 4.4c and 4.5c) increases with the number of

iterations both for passive and active learning. Indeed, the posterior introduces a bias toward

less complex hypotheses. Moreover, as more examples are available, more complex hypotheses

need to be considered. The complexity and prior of the MAP hypotheses consequently are

respectively increasing and decreasing as the number of iterations increases.

Finally, the average accuracy is represented in Figure 4.4d and 4.5d increases. The accuracy
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converges toward 1 for the bee experiment. The accuracy converges below 1 for the grammar

experiment since the number of sampled hypotheses consistent with the training set has not

converged to 1. Some complex hypotheses may only be approximated with the number of states

allocated. For both experiments, the default accuracy is around 0.5 and the learning process

starts with one positive instance for initialisation which explains the initial accuracy between

0.6 and 0.7. In both experiments, fewer iterations are required to reach any given accuracy

level with active learning compared to passive learning. Table 4.5 compares the number of

queries required to reach some accuracy levels for active and passive learning: it suggests

that experimental costs can at least be halved with active learning. A Mann-Whitney U test

indicates that the results are significant at a 0.01 level, thus refuting our Null Hypothesis 4.1.

In our framework, the entropy of a set of sampled instances is evaluated against sampled

hypotheses. As demonstrated by Lemma 4.1, the number of instances sampled augments the

probability of the existence of high entropy instances. In this sense, a larger sample size can

augment the speed of convergence. Thus, the number of instances sampled is a parameter

which involves a trade-off between computational cost and speed of convergence. The size of

the set of hypotheses regularly sampled affects the degree of approximation of the version space

and thus the precision on the entropy measured and on the evaluated accuracy.

4.7 Future Work

We identify the following limitations of these contributions which could be addressed as future

work.

Theoretical Analysis A limitation of the contributions of this Chapter is the lack of theoret-

ical bounds on the sample complexity, which we characterise as future work. These theoretical

bounds will provide average case sample complexity for different class of hypothesis spaces and

be expressed as a function of the number of hypotheses and instances sampled. These theo-

retical bounds over the sample complexity could be used to compare different active learning

query strategies and to measure their respective benefits over passive learning for some target
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hypothesis classes.

Cost Function In our current implementation, we have assumed a fixed cost for acquiring

each label and we have not explicitly represented experimental costs in the form of a utility

function. However, experimental cost may vary greatly over the instance space. For instance,

labelling cost may be represented as a function of the length of sequences in the grammar

experiment. Therefore, it would be valuable to further extend our framework by incorporating

a cost function representing the effort needed for labelling an instance. This cost will represent

the complexity of the realisation of an experiment and the amount of experimental resources

it requires. This framework could also be extended to allow for limited experimental resources

submitted to constraints. Finally, we also suggest extending this framework to the case in

which the cost of labelling instances is unknown to the learner. For instance, the active learner

can learn a predictive model of the unknown labelling cost alongside the task model [Settles et

al., 2008; Vijayanarasimhan and Grauman, 2009].

4.8 Summary

This Chapter has extended Bayesian MIL into Active Bayesian MIL and features automated

experimentation with active learning for learning efficient agent strategies. This approach

supports the idea of making efficient use of experimental costs while maintaining good predictive

accuracies. We have introduced a framework for Active Bayesian MIL. A Bayesian posterior

distribution is allocated over the hypothesis space. At each iteration, the learner queries the

label of an instance with maximal entropy given the hypothesis space posterior. We have

theoretically demonstrated that the probability of selecting an instance with maximal entropy is

N times the one of a passive learner in the same conditions, where N is the number of unlabelled

instances available. We have provided an implementation of Active Bayesian MIL. We have

experimentally demonstrated over two domains that Active Bayesian MIL converges faster

toward efficient strategies than a passive learner in the same conditions and that experimental

costs can be halved with active learning compared to passive learning.
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This Chapter has introduced a method to revise the instance space. We have demonstrated this

method can reduce the sample complexity of MIL, thus supporting Subthesis S.1. Conversely,

the next Chapter 5 introduces and evaluates a method to revise the hypothesis space to improve

the sample and learning complexity of MIL and thus investigates Subthesis S.2. Both these

Chapters will be extended in Chapter 6 with methods to revise both the instance and hypothesis

space and thus will investigate Subthesis S.3. While this Chapter has focused on learning

strategies for single agents, Chapter 6 will be adapted to learn strategies for describing the

behaviour of an agent evolving in an adversarial environment, with applications to game playing.



Chapter 5

Complete Bottom-up Predicate Invention

in MIL

In this Chapter, we investigate Subthesis S.2 and introduce a method for revising the hypothesis

space using predicate invention. This Chapter is based on the work published in [Hocquette

and Muggleton, 2020].

5.1 Introduction

We recall the example introduced in Section 1.1.4 in Chapter 1 and presented again in Figure

5.1. An optimal strategy in the chess endgame KRK is to confine the black king in an increas-

ingly smaller area. This area is delimited by the rank and file controlled by the white rook.

This white rook therefore is essential and must be maintained safe until checkmate. Threats

against this white rook can be blocked using the white king. An example of a situation in

which the white king protects the white rook is represented in Figure 5.1a. Figure 5.1b shows

an hypothesis describing such a situation. This hypothesis is divided into several invented

predicates representing sub-concepts.

We introduce a new method for partially delegating the construction of invented predicates

and demonstrate it can improve learning performance. The hypothesis is split into substrate

81
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(a) Example board.

Surface rp(S):-rp_1(S,P1),rp_3(S,P1).
Substrate rp_1(S,P1):-rp_2(S,P1),white(P1).

rp_2(S,P1):-piece(S,P1),king(P1).
rp_3(S,P1):-rp_4(S,P2),distance1(P2,P1).

rp_4(S,P2):-piece(S,P2),rook(P2).
(b) Target Hypothesis: S denotes a board state, P1 and P2 are pieces

Figure 5.1: Learning a chess pattern: the white king protects its rook. It is black-to-move.
See Figure 1.1 and Table 1.3.

and surface, as in Figure 5.1b. The substrate is a set of invented predicates generated in a first

step by a bottom-up learner and from the background knowledge. The surface is an hypothesis

built subsequently by a top-down learner which can reuse these substrate predicates. The use

of substrate predicates results in a shorter surface hypothesis which thus is easier to learn.

In MIL [Muggleton et al., 2015], predicate invention is performed during the search for a

consistent hypothesis conducted top-down. New predicate symbols represented with Skolem

constants are introduced in meta-substitutions. Conversely, we augment MIL systems with a

new method to perform predicate invention in an initial pre-processing step. The availability

of these invented predicates facilitates the subsequent search for a consistent hypothesis. Pred-

icates are invented bottom-up from the background knowledge using a new method based on

an extension of the immediate consequence operator for second-order logic programs. For each

meta-rule, if body literals can be resolved with the current background knowledge related to

the examples, then Skolem constants are bound to second-order variables in the head. The

resulting head is added to the background knowledge and the resulting meta-substitution is

saved as a new predicate definition. This process is iterated. We theoretically demonstrate

our bottom-up method is complete with respect to a fragment of dyadic Datalog. Moreover,

performing bottom-up iterations reduces the number of surface clauses to be learned by the
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top-down learner which in turn can reduce the sample complexity. This new method provides

a way to perform extensive predicate invention useful for feature discovery.

The contributions of this Chapter are as follows. We introduce a new method for performing

extensive predicate invention (Section 5.3). We formalise the definition of an equivalence re-

lation for predicates which is used to prune redundant predicates (Section 5.3). We provide a

theoretical upper bound over the number of predicates generated (Section 5.4). We theoretically

prove the completeness of this method with respect to a fragment of dyadic Datalog (Section

5.4). We theoretically prove our method reduces the number of surface clauses, which in turn

can reduce the sample complexity (Section 5.4). We provide and describe an implementation of

our method (Section 5.5). We demonstrate experimentally over two domains that this method

can significantly improve learning performance (Section 5.6).

5.2 Related Work

5.2.1 Predicate Invention

In this subsection, we extend the general overview of predicate invention given in Section

2.3.5. Early predicate invention approaches were based on the use of W operators within the

inverting resolution framework [Muggleton and Buntine, 1988]. However, the completeness

of this approach was never demonstrated, partly because of the lack of a declarative bias to

delimit the hypothesis space [Muggleton et al., 2015]. Alternatively, predicate invention can

be performed by adding new predicate symbols to mode declarations [Corapi et al., 2011; Law,

2018; Evans and Grefenstette, 2018]. However their number and arity has to be user-provided

while our method supports automated predicate invention. MIL systems [Muggleton et al.,

2014; Muggleton et al., 2015] achieve predicate invention in a top-down fashion by substituting

second-order variables in the meta-rules with higher-order Skolem constants representing new

predicate symbols. The number of new constants introduced depends on the depth in the

iterative deepening search. Conversely, we investigate bottom-up predicate invention in MIL

and do not directly bound the number of invented predicates but only bound the depth of
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the generation process. Finally, predicate invention can be performed as a form of meta-

learning over time. Dependent Learning [Lin et al., 2014] and Playgol [Cropper, 2019] allow the

construction of a series of predicates with increasing levels of abstraction by solving a series of

tasks with different complexity. In both cases, learned hypotheses are saved to the background

knowledge as predicate definitions that can be reused when solving subsequent tasks. Both

approaches are based on a set of tasks, user-provided or randomly sampled. Conversely, our

method builds predicate definitions from the background knowledge related to the examples

and does not require additional training tasks. Moreover, our method is complete.

5.2.2 Combining Top-down and Bottom-up approaches

We extend the review of hypothesis search methods from Section 2.3.7. Bidirectional hypoth-

esis search strategy was originally presented in the version space algorithm [Mitchell, 1982].

Variants were implemented in algorithms alternating generalisation and specialisation steps to

search through the lattice of clauses [Fensel and Wiese, 1993; Zelle et al., 1994; Muggleton, 1995;

Srinivasan, 2001; Califf and Mooney, 2003]. However, most of these systems [Fensel and Wiese,

1993; Muggleton, 1995; Srinivasan, 2001; Califf and Mooney, 2003] do not support predicate

invention which restrict their expressivity. [Zelle et al., 1994] includes a mechanism for demand

driven predicate invention. Conversely, our system is based on MIL and fully supports auto-

mated predicate invention. Moreover, our bottom-up mechanism is not used during the search

for a consistent hypothesis but prior to the search to shape the hypothesis space according to

the learning task.

5.3 Learning Framework

5.3.1 Immediate Consequence Operator

We investigate in this work predicate invention in MIL. MIL systems make use of background

knowledge treated as a second-order definite program. The background knowledge contains
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first-order background knowledge and second-order clauses called meta-rules. As described in

Section 3.3.4, predicate invention in MIL is usually performed by substituting second-order

variables in meta-rules with Skolem constants representing new predicates. This is achieved

top-down during the construction of a proof for the positive examples. Conversely, we present a

method for generating predicates bottom-up from second-order background knowledge and in a

pre-processing step. Predicates are constructed from an extension of the immediate consequence

operator for second-order logic programs.

We first refer to the definition of the immediate consequence operator for first-order logic

programs [Van Emden and Kowalski, 1976] stated in Definition 3.1. The immediate consequence

operator TP for first-order logic programs is a mapping from subsets of the Herbrand base to

subsets of the Herbrand base. It derives the set of ground atomic logical consequences of a

program given some interpretation. These logical consequences are identified as the head atoms

of ground instance of clauses which body literals are true under the interpretation considered.

The grounded variables are first-order variables which have been bounded to elements of the

Herbrand Universe. MIL systems consider second-order logic programs background knowledge.

Therefore, we extend Definition 3.1 to allow for second-order logic programs:

Definition 5.1 (Immediate Consequence Operator of a Definite Second-Order Program). Let

P be a definite second-order logic program. The immediate consequence operator TP associated

with P is an operator defined over subsets of BP as:

∀I ⊆ BP, TP(I) = {α | α← B1, ..., Bm,m ≥ 0 is a ground

instance of a clause in P and {B1, ..., Bm} ⊆ I and

second-order variables in α are bound to Skolem constants}

As in Definition 3.1, logical consequences are derived as the head atoms of ground instance of

clauses which body literals are true under the interpretation considered. First-order variables

also are bound to elements from the Herbrand Universe. In addition to Definition 3.1, in

Definition 5.1, potential second-order variables are bound to predicate symbols: second-order

variables in the body are bound to existing predicate symbols but potential second-order in the
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head of clauses are bound to new Skolem constants which representing new predicate symbols.

While applying the TP operator to first-order logic programs generates atoms which are part

of the Herbrand base of P, for second-order logic programs it generates atoms which may have

Skolem constants as predicate symbols in which case it extends the Herbrand base of P.

Example 5.1 (Immediate Consequence Operator of a Definite Second-Order Program). Sup-

pose there is a chess board with a rook r1 and a white king k1 located on the same file. P is a

second-order logic program containing the postcon meta-rule and ground unit clauses:

P = {Q(A,B)← R(A,B), S(B);

rook(r1)←;

king(k1)←;

white(k1)←;

samefile(r1, k1)←}

Applying the immediate consequence operator once to the interpretation I = ∅ results in the

following set of ground atoms which are part of the Herbrand base:

TP(I) = {rook(r1), king(k1),white(k1), samefile(r1, k1)}

Applying the immediate consequence operator a second time makes use of the postcon meta-rule

and generates the following set of atoms:

TP(TP(I)) = {samefileking(r1, k1), samefilewhite(r1, k1)}

Atoms in TP(TP(I)) have respectively been generated from the following ground instances of the

postcon meta-rule:

samefileking(r1, k1)← samefile(r1, k1), king(k1).

samefilewhite(r1, k1)← samefile(r1, k1),white(k1).

(5.1)
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In these ground instances of the postcon meta-rule, body literals are elements of TP(I). The

predicate names ‘ samefileking’ and ‘ samefilewhite’ are Skolem constants representing new pred-

icate symbols1. Atoms in TP(TP(I)) have a Skolem constant as predicate name thus this second

application of the immediate consequence operator has extended the Herbrand base.

5.3.2 Predicate Invention

A MIL learner takes as input a background knowledge B = Bc ∪ M treated as a second-

order definite program and composed of first-order definite clauses Bc and second-order definite

clauses M called meta-rules. We refer in the following to TB as the immediate consequence

operator associated with the second-order program B = Bc ∪M provided as input to a MIL

learner. Predicates are invented as follows. The TB operator is iteratively applied starting

from the empty set. For each new atom generated from a second-order clause, the resulting

meta-substitution is saved, including the Skolem constant generated. This meta-substitution

can later be projected onto the corresponding meta-rule to derive the definition of the invented

predicate which name is this saved Skolem constant.

Example 5.1 (Continued, Predicate Invention with the Immediate Consequence Operator).

After having computed TP(TP(I)), the learner saves the following meta-substitutions correspond-

ing to the ground instances of second-order clauses in the clauses 5.1:

sub(postcon, [Q/samefileking, R/samefile, S/king])

sub(postcon, [Q/samefilewhite, R/samefile, S/white])

These meta-substitutions can be projected back onto the postcon meta-rule to derive the follow-

ing first-order logic program Q representing the definitions of the invented predicates samefilek-

1Skolem constants are automatically generated as the concatenation of the meta-rule’s name and the in-
stantiated second-order variables in the meta-rule’s body which are saved in the meta-substitution. However,
Skolem constant names have been shortened for conciseness and clarity in the examples.
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ing/2 and samefilewhite/2:

Q = {samefileking(A,B)← samefile(A,B), king(B);

samefilewhite(a, b)← samefile(A,B),white(B)}

5.3.3 Elimination of Redundant Predicates

Successive applications of the TB operator generate a series of predicate symbols together with

their definitions. The generation of invented predicates is constrained by the language bias and

background knowledge. Still, the number of predicate symbols monotonically increases with

the number of iterations. To avoid cluttering the background knowledge, redundant predicates

are pruned at the end of each iteration. We define a notion of equivalence of predicates based

on equivalence of logic programs from success sets [Maher, 1988]. First, we refer to Definition

3.2 for the definition of the success set of a first-order logic program. We define the success set

of a predicate p given a first-order logic program P as:

Definition 5.2 (Success set of a predicate given a first-order logic program). Assume a first-

order logic program P, the success set SS(p,P) of a predicate p is the subset of the success set

of P restricted to atoms of p:

SS(p,P) = {α ∈ SS(P)|α has predicate symbol p}

We define our notion of predicate equivalence as the equality of success sets:

Definition 5.3 (Equivalence of Predicates). Two predicates p1 and p2 are equivalent given a

first-order program P if they have the same success set given P up to renaming of the predicate

symbols p1, p2:

SS(p1,P) =rename(p1,p2) SS(p2,P)

Given a predicate p1, if there exists a predicate p2 such that p1 and p2 are equivalent, p1 is said to
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be redundant with respect to p2. Intuitively, predicates covering exactly the same set of ground

atoms are not discriminative in a learning process, and adding such redundant predicates in

the background knowledge is helpless to build an hypothesis.

We recall that the success set of a first-order logic program P is equal to the least fix point of

the immediate consequence operator [Lloyd, 1987]: SS(P) = TP ↑ω. This equality provides

a simple and practical way of computing success sets, as the new atoms generated at each

iteration are saved together with predicate definitions. Therefore, evaluating success sets is

straightforward in our bottom-up construction.

Example 5.1 (Continued, Predicate Equivalence). The invented predicates samefileking/2 and

samefilewhite/2 have the following success sets given P ∪ Q:

SS(samefileking,P ∪ Q) = {samefileking(r1, k1)}

SS(samefilewhite,P ∪ Q) = {samefilewhite(r1, k1)}

Therefore, they are considered as equivalent given P ∪ Q.

5.3.4 Algorithm

Our algorithm for bottom-up predicate construction is presented in Algorithm 5.1. Given

a second-order logic program B = Bc ∪M , the learner considers the restriction B|E of the

background knowledge Bc related to the training examples E. This ensures the background

knowledge considered is related to the learning task at hand. We will describe our implementa-

tion of this step in Section 5.5. The learner successively computes the immediate consequence

of B|E according to Definition 5.1. Resulting invented predicates which are not equivalent to

any current predicates following Definition 5.3 are saved in the background knowledge. Their

success sets are saved such that can be used in subsequent iterations. After k iterations, the

top-down learner learns a consistent hypothesis while being allowed to reuse predicates invented

in bottom-up iterations. In our experiment, we will use Metagol as top-down learner. However,

our bottom-up algorithm can be paired with any other MIL system.
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Algorithm 5.1 Bottom-Up Learner
Input: second-order logic program B, examples E, number of iterations k
Output: logic program H

1: set H = ∅ and I = ∅
2: set B = B|E the restriction of the background knowledge B related to the examples E
3: for i = 1 to k do
4: for all new predicates p1 in TB(I) do
5: if 6 ∃ p2 ∈ H such that p2 and p1 are equivalent then
6: add the definition of p1 to H
7: add atoms from TB(I) with predicate symbol p1 to I
8: end if
9: I = TB(I)
10: end for
11: end for
12: return H

5.4 Theoretical Analysis

In the following, we call m the number of meta-rules and npred the number of initial predicate

symbols available to the learner. We call k the number of bottom-up iterations performed. We

restrict the scope of this work to the usual MIL program class H2
2 defined in Definition 3.8:

Assumption 5.1 (Program classH2
2 ). We assume meta-rules and hypothesised programs belong

to the program class H2
2 which consists of definite Datalog programs with dyadic predicates and

at most 2 atoms in the body of each clause [Muggleton et al., 2015].

5.4.1 Number of predicate symbols introduced

The number of invented predicates monotonically grows with the number of bottom-up itera-

tions. We first provide an upper bound over the number of predicates symbols introduced as a

function of m, npred and k.

Theorem 5.1 (Number of predicate symbols introduced). We call y the column vector of

powers of npred: y = {njpred}∞j=0. We call e the row vector e = {δj,1}∞j=0, where δj,k is the

Kronecker delta. For all k ∈ N∗, the number of predicate symbols available at the iteration k is
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upper bounded by a function uk which is polynomial in npred and m and which is defined by:

∀ k ∈ N, uk = eT ky with T verifying ∀ j, l ∈ N : Tj,l =

(
j

l − j

)
ml−j.

Proof. We prove by induction over k ∈ N that the number of predicate symbols available at the

iteration k is upper bounded by a function uk polynomial in npred and m. For k = 0, the initial

number of predicate symbols is u0 = npred and is polynomial in npred andm. Let k ∈ N. Suppose

the number of predicate symbols available at the iteration k is upper bounded by uk which is

polynomial in npred and m. The number of different clause bodies that can be constructed

from uk predicate symbols and one H2
2 meta-rule is at most u2k. Then, the number of different

bodies that can be constructed from m distinct H2
2 meta-rules is at most mu2k, this number is

the number of predicates that can be constructed in this iteration. Therefore, the number of

predicate symbols available at the iteration k+ 1 is upper bounded by uk+1 = uk +m.u2k which

is polynomial in npred and m. Then, for all k ∈ N, the number of predicate symbols is upper

bounded by uk, which is a non-linear sequence defined by the recursive formula:

 u0 = npred

uk+1 = uk +m.u2k

The solution to this non-linear recursive sequence is, from [Rabinovich et al., 1996]:

∀ k ∈ N, uk = eT ky with T verifying ∀ j, l ∈ N : Tj,l =

(
j

l − j

)
ml−j

We have used in Theorem 5.1 above the notation from [Rabinovich et al., 1996]. The size of

matrices y, T and e has been noted as infinite to represent the fact that the size of the sub-

matrix considered in the computations grows as a function of k. This size however is finite for

any finite k. Moreover, we emphasise that indexes run from 0.

Example 5.2 (Bound over the number of predicates introduced). We consider k = 2. The row
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vector e, the matrix T and the column vector y have values:

e =

[
0 1 0 0 0

]
and T =



1 0 0 0 0

0 1 m 0 0

0 0 1 2m m2

0 0 0 1 3m

0 0 0 0 1


and y =



1

npred

n2
pred

n3
pred

n4
pred


Then, after k = 2 iterations, the number of predicate symbols is upper bounded by:

u2 = eT 2y = npred + 2mn2
pred + 2m2n3

pred +m3n4
pred

For a given number of iterations k, Theorem 5.1 provides an upper bound on the number

of predicate symbols introduced. This upper bound is polynomial in npred and m since our

predicate invention method is constrained by the metarules and primitives. In practice, this

number of invented predicates also is limited by the initial background knowledge B and is

polynomial in the size of the background knowledge since constructed invented predicates must

be supported by ground units clauses in the background knowledge. In Section 5.5, we will

describe our selection process of initial ground background clauses which is used to limit the

complexity.

5.4.2 Completeness

We theoretically demonstrate within this Subsection the completeness of our predicate con-

struction method with respect to a fragment of H2
2 verifying the following assumption:

Assumption 5.2 (Recursions and disjunctions). We assume hypotheses in the language do not

contain recursions nor disjunctions.
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We define the following iterated TB operator for I ⊆ BP as:

T0,B(I) = I and ∀i ∈ N∗, Ti,B(I) = TB(Ti−1,B(I)) ∪ Ti−1,B(I)

Algorithm 5.1 run for k iterations derives a program H containing predicate definitions, each

having at most k non-recursive clauses. For all clauses in H, there exists a ground substitution

θ of the head belonging to Tk,B(∅). In other words, H satisfies the equation below for k:

∀Head← Body ∈ H,∃θ :

 Head θ = A

A ∈ Tk,B(∅)
(5.2)

Theorem 5.2 (Completeness). Assume k ∈ N and a theory H within the hypothesis space

defined by the primitives and meta-rules provided. H satisfies Equation 5.2 with parameter k

only if it is derivable in k iterations of Algorithm 5.1.

Proof. We prove by induction over k ∈ N that H satisfies Equation 5.2 with parameter k

only if it is derivable in k iterations of Algorithm 5.1. For k = 0, H = ∅ and our statement

trivially holds. Let k ∈ N. We assume theories satisfying Equation 5.2 with parameter k are

derivable in k iterations of Algorithm 5.1. We consider a theory H satisfying Equation 5.2 with

parameter k + 1. For all Head ← Body ∈ H, there exists a ground substitution θ such that

Head θ = A and A ∈ Tk+1,B(∅). All literals from Body θ are elements of Tk,B(∅) by definition

of Tk+1,B and TB. Then the set of predicate definitions associates with literals from Body θ

satisfy Equation 5.2 thus is derivable in k iterations of Algorithm 5.1. Performing one more

iteration of Algorithm 5.1 derives A = Headθ and the clause Head ← Body is saved in H.

Then, clauses from H are derivable in k + 1 iterations of Algorithm 5.1.

Theorem 5.2 shows our method is complete with respect to a non-recursive fragment of H2
2 .

In other words, our bottom-up construction method can construct all k clauses definitions

supported by the background knowledge in k bottom-up iterations. If the top-down learner

chosen also is complete, then the system combining the bottom-up and top-down learner is

complete.
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5.4.3 Sample complexity

The construction of substrate predicates helps to reduce the length of surface hypotheses, which

can reduce the learning complexity. We show that the construction of substrate predicates can

in turn reduce the sample complexity.

Proposition 5.1 (Sample Complexity gain [Cropper, 2019]). We assume the target hypothesis

expressed in its minimal form has n clauses with standard MIL. Let lk be the reduction over

the number of clauses in the minimal representation of the target hypothesis after k bottom up

iterations, that is the minimal number of clauses required to express the target hypothesis after

k bottom-up iterations is n− lk. We call npred,k the number of predicate symbols available after

k bottom-up iterations. We assume npred,0 initial predicates, m meta-rules in H2
2 , an error level

ε > 0 and a confidence level 1− δ with δ > 0. Then, the number of examples required to achieve

an error at most ε with confidence at least 1− δ is reduced after k bottom-up iterations when:

n ln(npred,0) > (n− lk) ln(npred,k)

Our bottom-up method revises the hypothesis space. The introduction of new predicate widens

the hypothesis space but also reduces the length of surface hypotheses which reduces the search

depth. Proposition 5.1 states that the sample complexity is reduced when the search depth

reduction offsets the cost of adding new predicates. It is worth noting that, by completeness

from Theorem 5.2, it is guaranteed that the number of clauses required to express a target theory

is reduced by at least lk = k after k bottom-up iterations when the target theory expressed in

its minimal form has n > k clauses with standard MIL. Indeed, all k clauses definitions are

constructible in k iterations. After they are made available to the top-down learner, it remains

to learn n− k clauses. Therefore, reduction over the search depth is ensured.

5.5 Implementation
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5.5.1 Sampling of background knowledge facts

Our bottom-up predicate invention method has a complexity polynomial in the number of initial

predicate symbols npred and in the number of meta-rules m according to Theorem 5.1. The

number of invented predicates also is restricted by the background knowledge B available since

invented definitions must be supported by facts from the background knowledge. Therefore,

in order to limit the complexity and in order to generate predicates relevant to the learning

task, Algorithm 5.1 considers the background knowledge B|E which is the restriction of the

background knowledge B related to the examples E. This allows to constrain the search for

invented predicates. B|E is a set of ground unit clauses sampled from the examples and initial

predicates as follows. First, the ground terms in the examples are extracted. Next, initial

primitive predicates are iteratively applied to these ground terms used as input variable. Each

successful resolution is saved as a background fact. If a resolution generates an output ground

term, this output ground term is saved and can be reused in further resolutions as input to

build new facts. This process is repeated. The number of iterations is set to a function of the

number of bottom-up iterations performed. Examples can be sampled uniformly at random to

ensure the size of the initial background knowledge is not too large. This process generates

a set of connected background facts which are relevant to the training examples. This set of

background fact is saved as B|E.

5.5.2 Applying the TB operator

New facts and invented predicate definitions are generated by applying the TB operator from

Definition 5.1 to B|E. Bodies of meta-rules inM are resolved against the background knowledge.

In order to limit redundancy of these resolution proofs, we ensure that each new proof reuses at

least one fact proved in the last iteration. Hence, a proof executed at the bottom-up iteration

i will not be executed again at iteration j, with j > i.
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5.5.3 Generation of unique Skolem constants

The successful resolution of the body of a second-order clause produces a head atom for which

second-order variables are bound to new Skolem constants. Skolem constants are built by

concatenating the meta-rule’s name and the instantiated second-order variables in the meta-

rule’s body. This process ensures the uniqueness of Skolem constants. If two predicates are

equivalent with respect to Definition 5.3, the predicate with the shortest number of concatenated

names is saved since it has a simpler definition by construction.

5.6 Experiments

5.6.1 Experimental Hypotheses

We experimentally test within this section whether the use of bottom-up iterations can improve

learning performance2. We evaluate the learning performance as the predictive accuracy, the

sample complexity and the learning time. Therefore, we investigate the following Experimental

Hypotheses:

Experimental Hypothesis 5.1. Augmenting MIL systems with bottom-up iterations can im-

prove predictive accuracies compared to standard MIL.

Experimental Hypothesis 5.2. Augmenting MIL systems with bottom-up iterations can re-

duce the sample complexity compared to standard MIL.

Experimental Hypothesis 5.3. Augmenting MIL systems with bottom-up iterations can re-

duce learning times compared to standard MIL.

To test these Experimental Hypotheses, we use the state-of-the-art MIL learner Metagol. We

compare the regular version of Metagol versus Metagol augmented with bottom-up iterations.

In each experiment, we provide both learning systems with the same background knowledge
2The code for reproducing the experiments is available at https://github.com/celinehocquette/bottom_

up.git

https://github.com/celinehocquette/bottom_up.git
https://github.com/celinehocquette/bottom_up.git
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containing the same primitives and meta-rules. Therefore, the only variable is the learning

system. We associate to the previous Experimental Hypotheses the following Null Hypotheses

that we will test:

Null Hypothesis 5.1. Augmenting Metagol with bottom-up iterations can not improve pre-

dictive accuracies compared to standard Metagol.

Null Hypothesis 5.2. Augmenting Metagol with bottom-up iterations can not reduce the sam-

ple complexity compared to standard Metagol.

Null Hypothesis 5.3. Augmenting Metagol systems with bottom-up iterations can not reduce

learning times compared to standard Metagol.

5.6.2 Rook protected in Chess Endgame KRK

KRK denotes the chess ending with white having a king and a rook and black having a king.

An optimal strategy is known and its correctness has been demonstrated [Bratko, 1978]. This

optimal strategy involves reducing the area available to the black king using the white rook.

An essential feature of this strategy is to ensure the safety of the white rook at all times. The

protection of this white rook can be achieved using the white king. This experiment considers

the task of learning whether the white rook is protected by its king. An example of a situation

in which the white king protects its rook is represented in Figure 5.1a.

Material The state of the board is a list of non-empty cells. Cells are atoms of the form

c(X,Y,Colour,Type) and encode the current position with rank X and file Y of the piece of

colour Colour (white or black) and type Type (rook or king). We provide both learners with 6

primitives: piece/2 which extracts non-empty cells from states, rook/1 and king/1 which hold

for non-empty cells with a piece of type rook or king respectively, white/1 and black/1 which

hold for non-empty cells with a piece of color white or black respectively, distance1/2 which

holds when the arguments are two pieces separated by a Chebyshev distance of 1. We provide

both learners with four meta-rules shown in Table 5.1. These meta-rules belong to H2
2 . The
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Experiment Name Meta-rule
1 postcon Q(a, b)← R(a, b), S(b).
1 conj Q(a)← R(a), S(a).
1 conj2 Q(a)← R(a, b), S(a, b).

1 and 2 chain Q(a, b)← R(a, c), S(c, b).

Table 5.1: Meta-rules used in the experiments: the letters Q, R, S denote existentially
quantified second-order variables and the letters a, b, c universally quantified first-order

variables.

target theory is shown in Figure 5.1b. It states that the rook is protected by its king in a board

S if there is a white king and a rook in S and if these two pieces are at distance 1 of each other.

Methods Training instances are instances of the form rook_protected(S) where S is a board

state. Positive examples are generated by placing the white rook and the black king on different

squares randomly selected on an empty board. The white king is placed on a random empty

square at distance 1 from the rook. Negative examples are generated by altering an attribute

(rank, file, colour or type) selected at random of either the white king or the rook in a positive

example such that the target theory does not hold for the resulting state. We perform between

1 and 3 bottom-up iterations. Initial facts are built from a sample of size 1 of the positive

examples. We measure the number of correct classifications over a set of 300 test instances

generated following the same process as the training set. Training and testing sets are built

with half positive, half negative examples therefore the default accuracy is 0.5. We compare

accuracies and learning times versus the number of training examples. We measure the standard

error of the mean over 100 repetitions.

Results Accuracy results are presented in Figure 5.2a. These results show that the regular

version of Metagol has worst predicative accuracy and converges slower compared to Metagol

augmented with any number of bottom-up iterations tested. A T-test suggests that the differ-

ence in accuracy is statistically significant (p < 0.05) for a training set with up to 16 instances

thus refuting Null Hypothesis 5.1. Sample complexity results are detailed in Figure 5.2b: these

results show that performing bottom-up iterations can reduce the sample complexity: the reg-
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(a) KRK: accuracy

Accuracy Metagol k=1 k=2 k=3
0.85 5 2 2 3
0.9 7 4 4 4
0.95 13 7 7 8
0.98 21 13 13 14

(b) Experimental Sample Complexity vs the number of
bottom-up iterations k

(c) KRK: learning time

Figure 5.2: KRK experiment results: Learning "rook protected by the king"
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ular version of Metagol requires at least 50% more training examples than Metagol augmented

with bottom-up iterations. We thus refute Null Hypothesis 5.2. The surface hypothesis from

Figure 5.1b has a size typically reduced from 5 to 3 clauses after k = 1 bottom-up iteration

and to 1 clause for k = 2 and k = 3. It is better than the expected reduction of 1, 2 and 3

clauses for k = 1, k = 2 and k = 3 respectively guaranteed by completeness from Theorem

5.2. The number of predicates available after the iterations k = 1, k = 2 and k = 3 typically is

at most p1 = 18, p2 = 42 and p3 = 71 respectively. These experimental values are consistent

with Proposition 5.1 which theoretically shows than bottom-up iterations, owing to the gen-

eration of reusable predicates, can reduce the sample complexity. One can observe that these

numbers of invented predicates are much lower than the worst case scenario bound provided

by Theorem 5.1 which guaranteed p1 ≤ 150, p2 ≤ 90150 and p3 ≤ 3.3 × 1010. This difference

can be explained by the requirement that invented predicates must be supported by facts in

the background knowledge and must be consistent with the language bias which restricts the

number of predicates invented in practice. Finally, learning times are presented in Figure 5.2c.

These results show that Metagol augmented with bottom-up steps requires significantly shorter

learning times compared to the regular version of Metagol. We thus refute Null Hypothesis 5.3.

However, one can observe than learning times are greater for 3 iterations compared to 1 and 2

iterations. This can be explained by the fact than more predicates have been generated and the

search is unnecessarily more expensive. Performing more than 2 bottom-up iterations (k > 2)

is not beneficial for this experiment as it can not further reduce the size of the target theory

but increases learning times.

5.6.3 String transformations

Materials We consider 94 string transformation problems evaluated in [Cropper, 2019] and

inspired from real-world spreadsheet problems [Gulwani, 2011; Lin et al., 2014]. This dataset

contains 10 positive examples for each problem. Each example is an atom of the form task(s1, s2)

where task is the problem name and s1 and s2 are input and output strings respectively. Two

examples of tasks are shown in Tables 5.2a and 5.2b. For each run and each task, one example
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Input Output
James Brown BROWN
David Batty BATTY

(a) Task p9: examples

Input Output
James Brown JB
Joanie Faas JF
(b) Task p39: examples

p39(A,B):-copy1skipwordskip1copy1(A,C),skiprest(C,B).
copy1skipwordskip1copy1(A,B) :- copy1skipword(A,C), skip1copy1(C,B).

copy1skipword(A,B):-copy1(A,C), skipalphanum(C,B).
skip1copy1(A,B):- skip1(A,C), copy1(C,B).

(c) Hypothesis learned for task p39: initial predicates are represented in bold. Predicates have been
renamed for clarity.

Table 5.2: String Transformation Experiment

is randomly selected to form the training set, the remaining nine being left for testing. We

provide both systems with the same background knowledge from [Lin et al., 2014] contain-

ing the nine primitive predicates copyalphanum/2, copy1/2, write_point/2, skipalphanum/2,

skip1/2, skiprest/2, make_lowercase/2, make_uppercase/2, make_uppercase1/2 and one meta-

rule which is the chain meta-rule represented in Figure 5.1. The language is a subset of H2
2 .

Methods We set the size of the top-down learner search space to n ∈ [2, 4] clauses. For

k ∈ [0, 3], k bottom-up iterations are performed. A time-out is set to 10 minutes. If a learning

task fails and no hypothesis is returned, the accuracy is set to 0. We measure the standard

error of the mean over 20 repetitions for the 94 tasks. As in [Lin et al., 2014; Cropper, 2019],

a functional restriction is set to compensate for the lack of negative examples.

Results Results are presented in Figure 5.3. Figure 5.3a shows that the accuracy increases

with the number of bottom-up iterations for any clause bound tested, outperforming the regular

version ofMetagol represented with the dotted horizontal lines. Thus, we confirm the refutation

of Null Hypothesis 5.1. Figure 5.3b represents the percentage of tasks solved versus the number

of iterations. Both the accuracy and the percentage of tasks solved for a clause bound of n and

after k bottom-up iterations are greater than that’s of Metagol for a clause bound of n + k.

Indeed, k bottom-up iterations can in practice reduce the target theory by more than k clauses

which is more than the guarantee provided by Theorem 5.2. Learned hypotheses generally are



102 Chapter 5. Complete Bottom-up Predicate Invention in MIL

(a) Accuracy

(b) Percentage of tasks solved

(c) Learning time of solved tasks

Figure 5.3: String transformation experiment results: baselines (dotted lines) correspond to
the regular version of Metagol, results for Metagol augmented with bottom-up steps are

represented with solid lines
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characterised by a high usage of predicates invented in bottom-up iterations. For example, the

hypothesis learned for the task 39 is shown in Table 5.2c. Respectively k = 1 or k = 2 bottom-

up iterations are enough to build the bottom 2 or 3 invented substrate predicates in which case

the surface hypothesis has respectively only 2 or 1 clauses. Conversely, the regular version of

Metagol requires 4 clauses to learn the same hypothesis. The reduction of the number of clauses

for this example is in practice larger than the worst-case theoretical result: completeness from

Theorem 5.2 guaranteed a reduction of at least 1 clause for k = 1 and 2 clauses for k = 2. The

number of predicates available is at most p1 = 38, p2 = 143 and p3 = 166 for k = 1, 2 and 3

respectively. These numbers are much lower than the bounds provided by Theorem 5.1 which

guaranteed p1 ≤ 90, p2 ≤ 8190 and p3 ≤ 6.8× 7. Finally, Figure 5.3c represents learning times.

Learning times increase with the number of bottom-up iterations, especially for larger clause

bounds. Augmenting the number of iterations makes available more background knowledge up

to the point it is unnecessary and starts to hinder the search.

5.6.4 Discussion

We have demonstrated over two domains our method can improve learning performance. Our

method increases the breadth of the search, through the addition of more predicate symbols, but

decreases the depth of the search, as hypotheses are shorter thanks to the reuse of predicates.

However, we have observed in Figure 5.3c that learning times can increase with the number

of iterations. This result highlights a limitation of our approach: the background knowledge

is monotonically increasing with the number of iterations, up to the point the breadth of the

search becomes too large, which hinders the search. This prevents scalability for large number of

iterations with large initial background knowledge. Future work is needed to identify predicates

from lower-levels which can be ignored when higher level predicates are made available.
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5.7 Future Work

We identify the following limitations of these contributions which could be addressed as future

work.

Learning more complex theories We have restricted the scope of this work with As-

sumption 5.2 to non-recursive definitions containing no disjunctions. Future work needs to be

conducted to extend this work to learn disjunctive definitions in bottom-up iterations. Learning

disjunctions could then allow learning recursions. Recursive definitions need a base case. The

base case can be given in the background knowledge or could have been invented in a previous

bottom-up iteration. A base case being available, a recursive clause can be constructed using the

tailrec meta-rule in the case that the body literals can be proved against the current background

knowledge. There are no unbound second-order variables in the head of the tailrec meta-rule

therefore no new Skolem constant need to be generated. However, multiple such recursive

clauses for the same predicate could be generated, and relevant subsets of these clauses must

be selected as appropriate disjunctions. We suggest the use of higher-order definitions [Cropper

et al., 2020b] could allow learning more complex definitions involving disjunctions or recursions.

Higher-order definitions can abstract away the complexity and make the recursion implicit in

the higher-order definition. Alternatively, meta-rules could be extended into meta-programs.

While meta-rules are single second-order clauses, a meta-programs represent multi-clause tem-

plates. The use of meta-programs has been investigated to learn divide-and-conquer programs

[Flener and Yıilmaz, 1999] and could allow the representation of more complex programs in

bottom-up iterations.

Theoretical Analysis Proposition 5.1 specifies a condition under which performing bottom-

up iterations reduces the sample complexity. However, this proposition does not predict a priori

when this condition will be fulfilled. For instance, we have experimentally observed in the KRK

experiment that performance does not continue to improve after k = 2 iterations. In addition,

performing too many iterations can overcrowd the background knowledge and hinder the search.
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For instance, learning time increases with the number of iterations in the string transformation

experiment. Future work is needed to theoretically predict the optimal number of bottom-up

iterations given a search space. This characterisation could be based on the density of relevant

predicates in the search space and on a bound over the number of invented predicates tighter

than the one provided by Theorem 5.1.

Moreover, preliminary experiments suggest our method is more effective for target theories for

which the calling diagram has a balanced tree structure instead of a more complex directed

cyclic or acyclic graph. The former benefit from a larger reduction over the size of the surface

hypothesis after bottom-up iterations than the latter. Future work is needed to theoretically

characterise target theories for which this bottom-up method is more effective. This character-

isation will be based on the degree of reuse of invented predicates in the calling diagram.

Sampling of initial facts Initial facts are sampled from the constants provided in the exam-

ples and from the primitive symbols. However, the complexity depends on the number of these

initial facts and thus depends on the number of constant symbols which prevents scalability.

Future work is needed to investigate a more efficient selection of relevant initial facts. We sug-

gest these facts could be identified with relational path-finding [Richards and Mooney, 1992;

Ong et al., 2005]. Considering the background knowledge forms an undirected graph, relational

path-finding finds paths by successive expansion around the nodes associated with the con-

stants in the positive examples. Another suggestion is to completely eliminate the complexity

dependence over the number of constant symbols by lifting initial grounded terms to first-order

terms which generalises this set of grounded terms.

More efficient representations We have implemented computations as Prolog proofs. Fu-

ture work could develop more efficient computations approaches to scale up to larger domains.

For instance, more efficient logical reasoning could be realised with linear algebraic multipli-

cations of programs and interpretations represented in a vector space [Sakama et al., 2017;

Nguyen et al., 2021]. Alternative data-structure could also be investigated. In [Gulwani, 2011],

a directed acyclic graph is used to represent and manipulate traces representing different ways
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of generating an output string from the input string. Similarly, we suggest representing knowl-

edge with a Directed Acyclic Word Graph [Blumer et al., 1985] built from the training data

and the background knowledge. A main advantage of this structure is its construction and

information retrieval efficiency: a Directed Acyclic Word Graph can be built in time linear in

the size of the input string.

5.8 Summary

We have introduced in this Chapter a new method for revising the hypothesis space in MIL

via automated predicate invention. This method performs extensive predicate invention in

a bottom-up fashion. It thus generates a set of reusable predicates representing intermediate

concepts hierarchically composable. Predicates are invented as generalisation of the background

knowledge with an extension of the immediate consequence operator for second-order logic

programs. Predicate invention relies on search constrained by the meta-rules, primitives and

background knowledge. A new predicate is generated only if it is supported by facts from the

background knowledge which are related to the examples. We have introduced a predicate

selection method based on equivalence of success sets to prune redundant predicates. We

have theoretically derived an upper bound over the number of predicates invented. We have

theoretically demonstrated our bottom-up method is complete with respect to a fragment of

dyadic Datalog. Moreover, we have theoretically and experimentally demonstrated that this

method reduces the number of clauses to be learned by the top-down learner, which can reduce

the sample complexity. Our experimental results have demonstrated that our method can

improve predictive accuracies and reduce the sample complexity and learning times.

This Chapter has introduced a method to revise the hypothesis space and has demonstrated this

method can reduce the sample and learning complexity in MIL, thus supporting Subthesis S.2.

The next Chapter 6 extends these contributions to methods that revise both the instance space

and the hypothesis space thus investigates Subthesis S.3. While this Chapter has focused on

learning relational features in games, Chapter 6 will focus on learning optimal game strategies.



Chapter 6

Meta-Interpretive Learning of Game

Strategies

In this Chapter, we investigate Subthesis S.3 and introduce a method for revising both the

instance space and the hypothesis space to reduce the sample complexity and improve the

learning performance in MIL and for learning game strategies. This Chapter is based on the

works published in [Muggleton and Hocquette, 2019; Ai et al., 2021]. Sections 6.1 to 6.5.3 are

based on [Muggleton and Hocquette, 2019] and Sections 6.5.4 to 6.5.5 on [Ai et al., 2021].

6.1 Introduction

Deep reinforcement learning systems have been demonstrated capable of mastering two-player

games such as Go [Silver et al., 2016; Silver et al., 2017], Chess [Silver et al., 2018], Shogi [Silver

et al., 2018], StarCraft [Vinyals et al., 2019]outperforming world-class human players. However,

these systems 1) generally require a very large training set to converge toward a good strategy,

2) do not provide transferability of the learned strategies to other games and 3) are not easily

interpretable as they provide limited explanation about how decisions are made [Garnelo et al.,

2016; Marcus, 2018].

107
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(a) Board example of a double attack,
this is an optimal move for O

win_2(A,B):-win_2_1_1(A,B),not(win_2_1_1(B,C)).
win_2_1_1(A,B):-move(A,B),not(win_1(B,C)).

win_1(A,B):- move(A,B),won(B).
(b) Logic program describing an optimal strategy

Figure 6.1: Noughts-and-Crosses: example of optimal move for O from state A to state B.
For all moves of X from state B, O can win in one move. This statement can be expressed
with the logic program presented: O makes a move such that X cannot immediately win nor

make a move that blocks O, see Figure 1.3.

We demonstrate in this Chapter how machine learning strategies as logic programs with MIL

can overcome these limitations. For example, an optimal strategy for playing Noughts-and-

Crosses is to create double attacks when possible. We refer to the example of double attack

introduced in Section 1.1.5 in Chapter 1 and presented again in Figure 6.1a. Player O makes

a move from board A to board B which poses two threats for the player X. These threats are

represented in green. This move results in a forced win and is an optimal move for O. The

rules presented in Figure 6.1b represent this strategy. A, B and C are variables which represent

state descriptions and encode the board together with the current player. These rules state

that a move by the current player from state A to state B is a winning move if the opponent

cannot immediately win and if the opponent cannot make a move to prevent an immediate

win by the current player. The rules provide an understandable strategy for winning in two

moves. Moreover, these rules are transferable to more complex games as they are generally

true for describing the concept of multiple simultaneous attacks. Finally, each of these rules

is applicable to a range of board states and thus this strategy is a generalisation over states.

In this sense, this strategy is represented compactly, therefore it is easier to learn and in turn

requires a smaller sample complexity.

We introduce in this Chapter a new logical system called MIGO (Meta-Interpretive Game



6.1. Introduction 109

Ordinator)1 designed for learning two-player game optimal strategies of the form presented

in Figure 6.1b. MIGO benefits from a strong inductive bias which provides the capability to

learn efficiently from a few examples of games played only. Moreover, learned strategies are

generally true for all two-player games which provides straightforward transferability to more

complex games. Finally, learned hypotheses are provided in symbolic form which allows their

interpretation.

MIGO is a MIL learner. MIL supports predicate invention which makes it suitable for learn-

ing game strategies. MIGO additionally supports Dependent Learning [Lin et al., 2014]. The

learning operates in a staged fashion: simple definitions are first learned and added to the back-

ground knowledge allowing them to be reused during further learning tasks. Thus, increasingly

complex definitions are hierarchically constructed. For instance, MIGO first learns a simple

definition of win_1/2 for winning in one move. Next, a predicate win_2/2 describing the

concept of winning in two moves can be built from win_1/2 as shown in Figure 6.1b.

Owing to tractability considerations Minimax Regret of a learning system cannot be evaluated

in complex games. Therefore, in this Chapter we consider simple evaluable games (Noughts-

and-Crosses and Hexapawn) in which Minimax Regret can be efficiently measured and be used

as a measure for evaluating learning performance. We use these evaluable games to compare Cu-

mulative Minimax Regret for variants of both standard and deep reinforcement learning against

two variants of MIGO. Our results demonstrate that substantially lower Cumulative Minimax

Regret can be achieved by MIGO compared to the variants of reinforcement learning tested.

Additionally, rules learned by MIGO are demonstrated to achieve significant transfer learning

in both directions between Noughts-and-Crosses and Hexapawn. Finally, MIGO ’s learned rules

are shown to be relatively easy to comprehend and to provide some comprehensibility.

Specifically, the contributions of this Chapter are as follows. We introduce a new system

called MIGO for learning optimal two-player-game strategies (Section 6.3). We provide and

describe its implementation (Section 6.4). We experimentally demonstrate MIGO achieves

significantly smaller Cumulative Minimax Regret than reinforcement learning systems, that
1From the children’s game-playing phrase My go! and the literal translation into English of the French word

Ordinateur which means computer.



110 Chapter 6. Meta-Interpretive Learning of Game Strategies

learned strategies are transferable to more complex games and that learned rules provide some

form of comprehensibility (Section 6.5).

6.2 Related Work

6.2.1 Learning Game Strategies

Various early approaches to learning a game strategy [Shapiro and Niblett, 1982; Quinlan,

1983] used the decision tree learner ID3 to classify minimax depth-of-win for positions in chess

end games. These approaches used a set of carefully selected board attributes as features.

Conversely, we investigate learning game strategies from a set of three relational primitives

(move/2, won/1, drawn/1) representing the minimal information a human would expect to

know before playing a two-person game. Moreover, it has been reported that chess experts

had difficulty understanding decision trees learned [Quinlan, 1983] due to their high complexity

which made them opaque to humans [Michie, 1983]. Methods for simplifying decision trees

without compromising their accuracy have been investigated [Quinlan, 1987] on the basis that

simpler models are more comprehensible to humans. A later ILP approach learned optimal

chess endgame strategies at depth 0 or 1 [Bain and Muggleton, 1994]. An informal complexity

constraint limiting the number of clauses used in any predicate definition to 7± 2 clauses was

applied. This number is based on Miller’s [Miller, 1956] experimental demonstration of a limit

of around 7 chunks in human short-term memory. Also, Aleph [Srinivasan, 2001] and TILDE

[Blockeel and De Raedt, 1998] have been demonstrated to outperform a SVM learner on the

Bridge opening bid problem [Legras et al., 2018]. However, examples in the aforementioned

works are board positions taken from a minimax database [Shapiro and Niblett, 1982; Quinlan,

1983; Bain and Muggleton, 1994] or labelled by human experts [Legras et al., 2018]. Conversely,

MIGO learns from game play. Moreover, transfer learning has not been examined for these

related works.

As described in Subsection 2.1.3, reinforcement learning has been widely used for learning game
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strategies. Reinforcement learning systems typically involve learning Q-values representing the

quality of each possible action from each state. Relational reinforcement learning [Džeroski et

al., 2001; Tadepalli et al., 2004] combines reinforcement learning with relational representations.

They also learn a policy as a Q-function. Conversely, the learning frameworkMIGO is not based

upon the identification of Q-values but aims at deriving hypotheses as logic programs describing

an optimal strategy. Also, by opposition with our approach, relational reinforcement learning

approaches do not involve predicate invention to extend the vocabulary provided to the user

and automatically discover new concepts. Finally, while most relational reinforcement learning

systems aim at learning single agent policy [Driessens and Džeroski, 2004; Sarjant et al., 2011],

MIGO is designed to learn two-player games in adversarial environment.

6.2.2 Transfer Learning

The idea of transfer learning is that experience gained while learning to perform one task can

help improve learning performance in a related but different task [Taylor and Stone, 2009]. Rule

Transfer [Taylor and Stone, 2007] is a transfer algorithm that first learns with the propositional

learner RIPPER [Cohen, 1995] rules summarizing a policy. Rules are then transformed via

hand-coded inter-task mappings so that they can apply to qualitatively different tasks. Con-

versely, MIGO learns first-order rules which are applicable to a wide range of states and thus

are easily transferable to similar domains. First-order rules identifying useful skills [Torrey

et al., 2006] or representing strategies [Torrey et al., 2007] are learned with the ILP system

Aleph [Srinivasan, 2001]. Skills are conditions under which an agent should take an action

while strategies are action plans composing skills together. Rules can be leveraged as advices

which are incorporated inside the Q-function [Torrey et al., 2006]. However, rules first need

to be propositionalised. Alternatively, rules can be leveraged as demonstration [Torrey et al.,

2007]: the learner begins by executing the previous strategy for a set of episodes instead of

exploring randomly, during these episodes it updates the Q-values with the score of the rules

used. Conversely, MIGO transfers first-order rules representing strategies and transfer learning

within MIGO is not based on the update or use of Q-values. Transfer Learning of heuristic pat-
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tern concepts has been demonstrated between simple games such as Tic-tac-toe, Connect4 and

Connect5 [Sato et al., 2015]. Unlike MIGO, this approach does not learn to play from scratch,

but, instead, uses an alpha-beta player with a heuristic function based on set of specialised

concepts learned using the ILP system Aleph [Srinivasan, 2001].

6.3 Theoretical Framework

6.3.1 Credit Assignment

One can evaluate the success of a game by looking at its outcome expressed as a reward. The

Credit Assignment Problem is the problem of redistributing this final reward to the various

moves performed before reaching this outcome. As described in Subsection 2.1.3, reinforce-

ment learning systems usually tackle this Credit Assignment Problem by adjusting parameter

values associated with the moves responsible for the reward observed. Conversely, we introduce

theorems for identifying moves that necessarily are positive examples for the task of winning

and drawing. A game G is represented as a sequence of board states G = {B0, B1, B2...}. A

game may start from any legal state B0. Let G be a game played between two players, the

learner P1 and its opponent P2. We make the following assumption regarding the opponent:

Assumption 6.1 (Optimal Opponent). The learner P1 plays against an opponent P2 that

follows an optimal strategy.

We consider the following natural ordering over the different possible outcomes for P1:

won � drawn � lost

The following Lemma states the expected outcome of P1 is monotonically decreasing:

Lemma 6.1 (Decreasing Expected Outcome). The expected outcome of P1 cannot increase

during a game G.
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Proof. P2 plays optimally. Therefore any move of P2 maintains or lowers the expected outcome

of P1 throughout G. Therefore P1 cannot increase its outcome.

Lemma 4.1 states that the expected outcome of the learner can only decrease or be maintained

throughout a game. We now demonstrate the theorems below to identify positive examples for

the tasks of winning and drawing given Assumption 6.1 and Lemma 4.1:

Theorem 6.1 (Winning Positive Example). If the outcome of a game G is won for P1, then

every move of P1 in G is a positive example for the task of winning.

Proof. Let G be a winning game sequence . We suppose there exists within G a move of P1

from a board state Bi to a board state Bi+1, with i ≥ 0, such that this move is a negative

example for the task of winning. Then the expected outcome of Bi is won and the expected

outcome of Bi+1 is strictly lower with respect to the ordering �. Following Lemma 4.1, the

outcome of the game is strictly lower than won, which leads to contradiction with the outcome

observed.

Theorem 6.2 (Drawing Positive Example). We additionally assume an accurate strategy SW

for winning has been learned by the learner P1. If the outcome of the game G = {B0, B1, ...} is

drawn and if the execution of SW on the initial board state B0 fails, then any move played by

either P1 or P2 in G is a positive example for the task of drawing.

Proof. Let G be a drawing game sequence starting from B0. The initial position B0 does not

have an expected outcome of won for P2 otherwise the outcome would be won for P2 since it

plays optimally according to Assumption 6.1. The initial position B0 neither has an expected

outcome of won for P1 otherwise the execution of SW on B0 would not fail. Therefore, the

expected outcome of B0 necessarily is drawn. Since the outcome also is drawn, it follows from

Lemma 4.1 that every position reached during the game has an expected outcome of drawn

and that every move of both players is a positive example for the task of drawing.

We recall strategies, such as SW , are represented as logic programs. Then, the execution of the

strategy SW on the initial board state B0 fails means that there are no moves consistent with
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the strategy SW when providing B0 as input.

Theorem 6.1 demonstrates that when the outcome is won for P1 and because the opponent plays

optimally according to Assumption 6.1, then the expected outcome necessarily is maintained

throughout the game as won for P1. Theorem 6.2 demonstrates that when the outcome is

drawn, if the initial board state does not have an expected outcome of won for P1, then the

expected outcome necessarily is maintained throughout the game as drawn. However, these

theorems cannot be further generalised. For instance, an outcome of won for P2 might be the

consequence of a mistake of P1 who does not play optimally. In this case, a prefix of the game

sequence might have an expected outcome of won for P1 or drawn and moves of P2 in this prefix

do not have an expected outcome of won for P2 thus are not positive examples for the task of

winning. Similarly, an outcome of drawn might be the consequence of a mistake of P1 if the

initial board state has an expected outcome of won for P1, in which case a prefix of the game

sequence which length is unknown does not contain positive examples for the task of drawing.

We highlight that Theorems 6.1 and 6.2 identify positive examples but do not provide any

negative examples for win/2 or draw/2. These theorems do not locate moves for which the

expected outcome decreases. Therefore, the learning system we consider learns from positive

examples only.

6.3.2 Game evaluation

For the two games studied, Noughts-and-Crosses and Hexapawn, an optimal opponent can

always ensure a draw from the initial board state, which leaves no opportunities for the learner

to win against an optimal opponent. To ensure possibilities of winning, the game instead starts

from a board randomly sampled from the set of one move ahead accessible boards. This set

includes all different expected outcomes for the games considered. Then, the actual outcome

relies on both the choice of initial board and the sequence of moves performed. We define the

Minimax Regret as follows to evaluate the regret of a game given some initial board.

Definition 6.1 (Minimax Regret). The Minimax Regret of a game is the difference between
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the reward associated with the minimax expected outcome of the initial board and the reward

associated with the actual outcome of the game.

The regret represents the loss between the optimal sequence of decisions and an algorithm’s

sequence of decisions. In the following, we evaluate the learning performance using the Cumu-

lative Minimax Regret:

Definition 6.2 (Cumulative Minimax Regret). The Cumulative Minimax Regret is the sum of

the Minimax Regrets accumulated over a sequence of games.

The Cumulative Minimax Regret defined in Definition 6.2 does not rely on the choice of initial

board and thus provides an absolute measure to evaluate the learning performance of a learn-

ing algorithm. It allows to fairly compare several learning systems. Thereafter, we evaluate

and compare learning systems using the Cumulative Minimax Regret. The minimax expected

outcome of a board can be evaluated from a minimax database computed beforehand. The

outcomes won, drawn and lost are respectively associated with the reward values 2, 1 and 0.

Therefore, the Minimax Regret ranges between 0 and 2 and the Cumulative Minimax Regret

takes positive values.

6.3.3 MIGO algorithm

We present within this subsection details of the algorithm MIGO.

MIL MIGO is a MIL system [Muggleton et al., 2014; Muggleton et al., 2015]. It takes

as input some background knowledge and meta-rules. The background knowledge is a logic

program encoding the rules of the game. The meta-rules encode the language bias. Examples

are identified from Theorems 6.1 and 6.2 whilst playing. MIGO learns first-order logic programs

SW and SD representing strategies for the task of winning and drawing respectively. MIGO is

based upon the MIL learning system Metagol.
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Learning from positive examples Theorems 6.1 and 6.2 assign positive labels to moves for

the tasks of winning and drawing. However, these theorems do not allow identifying negative

examples for any of these tasks. Therefore, learning is based on positive examples only. MIGO,

as a MIL system, can make use of language bias to restrict the hypothesis space and generalise

from few examples only [Lin et al., 2014; Dai et al., 2017]. However, there is a risk of over-

generalisation due to the absence of negative examples.

Dependent Learning MIGO learns a global strategy by decomposing the game into a series

of inter-related problems. We measure the depth of a board as the number of full moves until the

end of the game sequence. The learning starts from lower depth, that is from end-game moves

which represent simpler tasks and progressively extends to larger depth, that is to opening moves

which are more complex tasks. For successive values of the depth k a series of inter-related

definitions are learned for predicates win_k(A,B) and draw_k(A,B). These predicates define

maintenance of minimax win and draw in k moves when moving from state A to B. Similarly

to Dependent Learning [Lin et al., 2014], the idea is to first learn low-level predicates. The

definitions are added into the background knowledge such that they can be used in further

definitions. The process continues until the maximum depth is reached.

One-Shot learning MIGO is provided with background knowledge representing the rules of

the game. To build invented predicates representing new board features and new relational con-

cepts which are not provided in the background knowledge, MIGO performs one-shot learning

before learning a definition for each depth. MIGO learns definitions for each example treated

independently with Dependent Learning [Lin et al., 2014]. MIGO first sets a limiting complex-

ity. In the following, the complexity is measured as the number of clauses in a logic program.

For each single positive example, MIGO attempts to construct a program with limited com-

plexity. Whenever a definition is learned, other positive examples which are covered by this

definition are removed. When all examples have either been attempted or covered, learned

programs are added to the background knowledge as new predicate symbols such that they can

be reused when building further definitions. Moreover, the limiting complexity is incremented.
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Algorithm 6.1 MIGO Algorithm
Input: Positive examples for each win_k and draw_k, background knowledge B
Output: Strategy SW for winning and SD for drawing
1: for k = 1 to Depth do
2: one shot learn a rule for each example of win_k/2 and add it to B and to SW
3: Learn win_k/2 and add it to B and to SW
4: end for
5: for k = 1 to Depth do
6: one shot learn a rule for each example of draw_k/2 and add it to B and to SD
7: Learn draw_k/2 and add it to B and to SD
8: end for
9: return SW and SD

Then, MIGO considers again examples which still have not been covered by any programs and

attempts to learn programs within the augmented complexity bound and while being allowed

to reuse previously invented definitions. This process is repeated until all positive examples are

covered or until the maximum complexity is reached. Performing one-shot learning before the

main learning tasks helps to generate and make available new predicate definitions.

Learning Algorithm The learning algorithm of one iteration of MIGO is presented in Al-

gorithm 6.1. Positive examples have been identified following Theorems 6.1 and 6.2. Learning

operates in a staged fashion: for increasing values of the depth k, a predicate definition is built

while being allowed to reuse previously invented predicates. At each depth, MIGO first learns

definitions from single examples and with limited complexity which generates reusable invented

predicates. Then, MIGO learns a definition for the depth considered. In this way, MIGO starts

by learning simpler rules, and builds more complex rules on top of each other. Each action

‘learn’ represents a call to the MIL system Metagol.

Mixed Learning and Separated Learning Theorem 6.2 assigns positive labels to draw/2

examples assuming a winning strategy SW has already been learned. In practice, we distinguish

two variants of MIGO which deal differently with the availability of a winning strategy SW :

Separated Learning: win/2 and draw/2 are learned in two stages. First, a strategy SW for

win/2 is learned. A counter measures the number of iterations during which the current
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winning strategy SW has been stable. When this counter exceeds a given threshold value,

the learner starts learning a strategy SD for draw/2.

Mixed Learning: win/2 and draw/2 are learned simultaneously. Examples of draw/2 are eval-

uated with the current strategy SW for win/2. When this latter is updated, examples of

draw/2 are re-tested against the new version of SW .

Algorithm 6.1 represents the learning process in one iteration. A call to Algorithm 6.1 is made

after a game terminates and more examples are identified. However, mixed and S separated

learning are learning scheme that span over multiple iterations. Therefore, the difference be-

tween mixed and separated learning is not visible in Algorithm 6.1.

6.4 Implementation

6.4.1 Representation

Learned strategies apply to board states. States are atoms of the form s(B,M) and represent

the current board B together with the current player M . A board B is encoded as a vector of

marks. For instance, for Noughts-and-Crosses, board vectors have size 9, marks are elements

from the set {O,X,Empty} and the current player is either O or X. For Hexapawn, board

vectors have size 9 or 16, marks are elements from the set {B,W,Empty} and the current

player is either B (black) or W (white).

6.4.2 Primitives and Meta-rules

Learned programs are formed of dyadic predicates, representing actions, and monadic predi-

cates, representing fluents. The language belongs to the language class H2
2 . The background

knowledge contains a general move generator move/2, which is an action that modifies a state

s(B,M) by executing a legal move on board B and updating the current player M . The

predicate move/2 only holds for valid moves: in other words, the learner knows the rules of
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the game. The background knowledge also contains two fluents: a won classifier won/1 and a

drawn classifier drawn/1 which hold when a state is respectively won or drawn. These primi-

tives encode the minimal information a player should know when playing a game. The learner

Name Meta-rule
postcon P (a, b)← Q(a, b), R(b).
negation P (a, b)← Q(a, b), not(R(b, c)).

Table 6.1: Meta-rules used in MIGO : the letters P , Q and R denote existentially quantified
second-order variables and the letters a, b, c universally quantified first-order variables.

is provided with the meta-rules postcon and negation represented in Table 6.1. The postcon

meta-rule is a standard meta-rule. The meta-rule negation is a variant of the postcon meta-rule

which includes logical negation for primitive predicates. It is implemented as negation as fail-

ure. This meta-rule allows for the negation of primitive predicates without having to include

each negated primitives as a new primitive. However, this form of negation does not allow for

the introduction of negated invented predicates and only can negate existing primitive predi-

cates. We overcome this limitation with the use of Dependent Learning and one-shot learning.

Dependent Learning and one-shot learning allow the construction of invented predicates which

are successively added as new primitive predicates. Thus, the learner can negate predicates

invented in previous depths.

6.4.3 Execution of the strategy

The learner plays following its learned strategy. For increasing values of k, a clause of the

form ‘win(A,B) :- win_k(A,B).’ is added to the background knowledge. Then, clauses of

the form ‘draw(A,B) :- draw_k(A,B).’ similarly are added to the background knowledge for

increasing values of k. When executing a strategy described with an hypothesis H, the move

performed is the first one consistent with H. Practically, MIGO first attempts to execute

win/2 and attempts to prove win_k/2 for increasing values of k. Failing that, it attempts

to execute draw/2 and attempts to prove draw_k/2 for increasing values of k. If all these

proofs fail, a move is selected at random among legal moves. Applying winning rules before

drawing rules, and each in increasing depth order, can be justified as the choice of the action
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with maximum expected reward, such as choosing the action with the maximum Q-value in

reinforcement learning.

The opponent chosen is an optimal player following the minimax algorithm to comply with

Assumption 6.1. The opponent plays a deterministic minimax strategy that yields the best

outcome in the minimum number of moves. Optimal moves are identified from a database

computed beforehand.

6.4.4 Learning a strategy

At the end of a game, the outcome is observed and the sequence of visited states is divided into

moves. The depth of each move is measured as the number of full moves until the end of the

game in the observed sequence. Moves are added to the training set for win_k/2 or draw_k/2

if they satisfy Theorems 6.1 or 6.2 respectively. Strategies are relearned from scratch after each

game using Algorithm 6.1. One additional constraint is added such that draw/2 cannot be

learned before a strategy for win/2 exists since this would cause the learner to always draw

and never win.

6.5 Experiments

6.5.1 Experimental Hypotheses

This Section describes experiments which evaluate the performance of MIGO for the task

of learning optimal two-player game strategies2. To support our claim that MIGO achieves

improved sample efficiency compared to reinforcement learning systems, we first investigate

the following Experimental Hypothesis:

Experimental Hypothesis 6.1. MIGO can converge faster toward optimal two-player game

strategies than state-of-the-art reinforcement learning systems.
2The code for reproducing the experiments is available at https://github.com/migo19/migo.git

https://github.com/migo19/migo.git
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To test this Experimental Hypothesis, we measure the speed of convergence with the Cumulative

Minimax Regret defined in Definition 6.2. The Cumulative Minimax Regret is an absolute

measure which allows to evaluate and compare the performance of learning systems. Therefore,

our experiments consider evaluable games for which we can evaluate the Cumulative Minimax

Regret. Specifically, our experiments consider the task of learning strategies for the games of

Noughts-and-Crosses and a variant of the game of Hexapawn [Gardner, 1962]. We compare

MIGO against several representative reinforcement learning systems: MENACE / HER, Q-

learning and Deep Q-learning. While MENACE [Michie, 1963] and HER [Gardner, 1962]

are specifically designed to learn optimal strategies for Noughts-and-Crosses and Hexapawn

respectively, Q-learning and Deep Q-learning are general reinforcement learning algorithms,

which in particular are applicable to both games studied. Moreover, we assume an optimal

opponent. This particular setting falls within the limits of the assumptions of all systems

evaluated. All systems are evaluated under the same experimental conditions. Therefore, the

only variable is the learning system. At the end, we investigate the following Null Hypothesis

associated with the previous Experimental Hypothesis 6.1:

Null Hypothesis 6.1. MIGO cannot converge faster in terms of Cumulative Minimax Regret

than MENACE / HER, Q-learning and Deep Q-learning for learning optimal two-player game

strategies.

We additionally test the ability of MIGO to transfer learned strategies to more complex games.

Our second experiment evaluates whether knowledge learned in a source task can be leveraged to

speed up learning in a related subsequent target task. Thus, we test the following Experimental

Hypothesis:

Experimental Hypothesis 6.2. MIGO supports transfer learning of learned strategy.

Similarly, we will evaluate the performance using the Cumulative Minimax Regret. Our exper-

iment will evaluate the capacity to transfer knowledge in both directions between Hexapawn

and Noughts-and-Crosses. We associate to this Experimental Hypothesis the following Null

Hypothesis:
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Null Hypothesis 6.2. MIGO cannot converge faster in terms of Cumulative Minimax Regret

when transferring the strategy learned for a game to a different game.

6.5.2 Convergence

Figure 6.2: Initial boards for Hexapawn3 and Hexapawn4

Materials The first game we consider is Noughts-and-Crosses. A board of Noughts-and-

Crosses is represented in Figure 6.1a. We recall games start from an initial board sampled from

the set of one-move ahead boards. In Noughts-and-Crosses, the set of one-move ahead boards

comprises 12 boards after taking into account rotations and symmetries. Among them 7 are

expected win, and 5 are expected draw. Therefore the expected worst case regret is 1.58 for

Noughts-and-Crosses.

The second game we consider is Hexapawn. Hexapawn’s initial board is represented in Figure

6.2. In this game, the goal of each player is to advance one of their pawns to the opposite

end. Pawns can move one square forward if the next square is empty or capture another pawn

one square diagonally ahead of it. We have modified the rules to include the possibility of

draw: the game is said to be drawn when the current player has no legal move. Thereafter,

we refer to Hexapawn3 and Hexapawn4 for the game of Hexapawn in dimensions 3 by 3 and

4 by 4 respectively. For Hexapawn3, the set of one-move ahead positions comprises 5 boards

after taking into account the vertical symmetry. Among them, 3 are expected draw and 2

are expected win. Therefore the expected worst case regret is 1.4. For Hexapawn4, the set of

one-move ahead positions comprises 8 unique boards, 5 of which are expected win, 2 expected

draw and 1 expected loss. Therefore the expected worst case regret is 1.5.
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Methods We evaluate all learning systems within the same experimental conditions. All

systems play games starting from the same set of initial boards randomly sampled from the set

of one-full-move-ahead positions. All systems evaluated face the same deterministic minimax

player. The learner always starts the game. We follow an implementation of Tabular Q-learning

available from [fheisler, 2015]. This implementation of Tabular Q-learning has specifically been

designed and tuned for the game of Noughts-and-Crosses. We used the parameter values

provided: the exploration rate is set to 0; the initial q-values are 1; the discount factor is

γ = 0.9 and the learning rate α = 0.3. Similarly, we follow an implementation of Deep Q-

learning available from [yanji84, 2016]. This implementation has specifically been designed

and tuned for the game of Noughts-and-Crosses. We use the parameter values provided: the

discount factor is set to 0.8; the regularisation strength to 0.01; the target network update

rate to 0.01; the initial and final exploration rate are 0.6 and 0.1 respectively; the batch size

is 32. We implemented MENACE and HER following the description and parameters from

[Michie, 1963] and [Gardner, 1962]: one-move-ahead states initially contain 3 beads of each

colour, two-move-ahead states 2 beads and three-move-ahead states 1 bead. A win is rewarded

with three additional beads, a draw with one additional bead and a loss is punished with one

bead forfeit. Regarding MIGO, in separated learning, the threshold value over the counter for

starting learning draw/2 is set to 10 for Noughts-and-Crosses and to 5 for Hexapawn3 as the

dimensions are smaller.

Results Results have been averaged over 20 runs for Noughts-and-Crosses and 40 runs for

Hexapawn3. Results are presented in Figure 6.3 and show that both variants of MIGO converge

significantly faster than MENACE / HER, Q-learning and Deep Q-learning for both games.

Both variants of MIGO require around 60 games to converge for Noughts-and-Crosses while

MENACE, Q-learning and Deep Q-learning need more than 200. MIGO requires around 12

games to converge for Hexapawn3 while HER needs around 38, Q-learning around 31 and Deep

Q-learning more than 100. These results evidence two cases for which MIGO outperforms the

reinforcement learning systems tested. Therefore, we can refute Null Hypothesis 6.1. MENACE,

HER and Q-learning encode the knowledge into parameters (number of beads or Q-values)
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(a) Noughts-and-Crosses

(b) Hexapawn3

Figure 6.3: Cumulative Minimax Regret versus the number of iterations for
Noughts-and-Crosses and Hexapawn3

which are unique for each action from each state. Knowledge cannot be transferred from

one state to another which results in a weaker generalisation ability. Deep Q-learning can

provide some generalisation ability; however, it is only visible after a large number of iterations.

Conversely, MIGO generalises the board characteristics and each rule learned describes a set

of states, which considerably reduces the number of parameters to learn and therefore reduces

the number of examples required for convergence. The maximum depth is larger for Noughts-

and-Crosses than for Hexapawn3. Therefore, all systems require more iterations to converge

for Noughts-and-Crosses compared to Hexapawn3.

The systems presented have different ranges of applications. MENACE and HER are specifi-
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cally tailored for Noughts-and-Crosses and Hexapawn3 respectively. Conversely, Q-learning and

Deep Q-learning are a general approaches that can tackle a wide range of tasks providing that

parameters are tuned. For instance, deep Q-learning performs worst on Hexapawn3 than other

systems. This can be explained by the fact that the parameters selected are the ones tuned for

Noughts-and-Crosses and might not be adapted to a different game. Finally, MIGO assumes

an optimal opponent which reduce its range of applications to the set of evaluable games.

The systems evaluated have different learning strategy. MENACE and HER have a non-

deterministic strategy, these systems assign a probability for each possible move which is revised

during learning. Q-learning and deep Q-learning explore with some small probability in which

case an action is chosen at random, and they choose the best option as the one with the high-

est Q-value otherwise. Conversely, MIGO plays the first consistent move while executing the

strategy. If no moves are consistent with the current strategy, a move is selected at random,

which corresponds to an exploration strategy. While MIGO uses a formalised logical bias in

the form of meta-rules and encoded in the search procedure, MENACE, HER, Q-learning and

deep Q-learning encode bias into hyper-parameters values and into their model structure.

For both games, the version of MIGO with mixed learning has lower Cumulative Minimax

Regret than separated learning. This can be explained by the fact that mixed learning does

not waste any examples of draw/2 from the initial period in which win/2 is being learned and

it does not stop learning win/2 after the initial period.

6.5.3 Transferability

Materials and Methods Strategies are first learned for the source tasks Hexapawn3 and

Noughts-and-Crosses following the same method as in the previous experiment. Strategies are

learned with mixed learning for 100 iterations for Hexapawn3 and 200 iterations for Noughts-

and-Crosses. The resulting learned program is transferred to the target learning task Noughts-

and-Crosses and Hexapawn4 respectively. Only the background knowledge changes from one

task to another, which is the definitions of move/2, won/1 and drawn/1. Results have been

averaged over 20 runs.
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(a) Hexapawn3 to Noughts-and-Crosses

(b) Noughts-and-Crosses to Hexapawn4

Figure 6.4: Transfer Learning Experiment: Results. Similar results are obtained from
Hexapawn3 to Hexapawn4.

Results Results are presented in Figure 6.4. Results show that transferring the strategy

learned for a previous game to a different game helps to converge faster. The number of games

until convergence when learning Noughts-and-Crosses drops from 60 to 15 if being trained first

on Hexapawn3. The number of games until convergence when learning Hexapawn4 drops from

110 to 25 if being trained first on Noughts-and-Crosses. The learner benefits from the knowl-

edge transferred and its performance accordingly are substantially improved compared to an

initial random player. Therefore, we refute Null Hypothesis 6.2. This experiment demonstrates

learned strategies are general enough to be applicable in multiple contexts in a straightforward

way. MIGO learns first-order rules which are very general and that can be applied to a mul-

titude of different games, which is not true of reinforcement learning systems. Although this
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experiment considers games which are relatively similar, these results exhibit MIGO ’s inherent

capacity for transfer learning.

6.5.4 Comprehensibility

Depth Rule

1
win_1(A,B):-win_1_1_1(A,B),won(B).
win_1_1_1(A,B):-move(A,B),won(B).

draw_1(A,B):-draw_1_1_3(A,B),not(win_1(B,C)).
draw_1_1_3(A,B):-move(A,B),not(win_1(B,C)).

2

win_2(A,B):-win_2_1_1(A,B),not(win_2_1_1(B,C)).
win_2_1_1(A,B):-move(A,B),not(win_1(B,C)).

draw_2(A,B):-draw_2_1_1(A,B),not(win_1(B,C)).
draw_2_1_1(A,B):-draw_1(A,B),not(win_1(B,C)).

3

win_3(A,B):-win_3_1_1(A,B),not(win_3_1_1(B,C)).
win_3_1_1(A,B):-win_2_1_1(A,B),not(win_2(B,C)).

draw_3(A,B):-draw_3_1_10(A,B),not(draw_1_1_3(B,C)).
draw_3_1_10(A,B):-draw_2(A,B),not(draw_1_1_3(B,C)).

4 draw_4(A,B):-draw_4_1_2(A,B),not(draw_1_1_3(B,C)).
draw_4_1_2(A,B):-draw_3(A,B),not(draw_1_1_3(B,C)).

Table 6.2: Example of rules learned for Noughts-and-Crosses (all) and Hexapawn3 (above the
double line)

Rules learned by MIGO are presented in Table 6.2. MIGO converges toward this full set of

rules when playing Noughts-and-Crosses. Because the maximum depth of Hexapawn3 is smaller,

MIGO learns rules up to the double line when playing Hexapawn3. After unfolding, the first

rule can be translated into English as: State A is won at depth 1 if there exists a move from

A to B such that B is won. Similarly, winning at depth 2 can be described with the following

statement: State A is won at depth 2 if there exists a move of the current player from A to B

such that B is not immediately won for the opponent and such that the opponent cannot make

a move from B to C to prevent the current player from immediately winning. This statement

is similar to the one presented in Section 6.1. Finally, winning at depth 3 can be explained as:

State A is won at depth 3 for the current player if there exists a move from A to B such that

B is not won for the opponent in 1 nor 2 moves and such that the opponent cannot make a

move from B to C to prevent the current player from winning in 1 or 2 moves. The use of a

literal followed by its immediate negation means that the current player has some advantage
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that the opponent has not. Since the current player changes with the board state, the first

literal applies to a state for which it is one player to move, and the second applies to a state

for which it is its opponent’s turn. The same last literal is repeated in depth 1 rules because of

the language bias.

Rules are hierarchically built on top on each other. The calling diagram in Figure 6.5 represents

the dependencies between each learned predicates. Lower depths are at the bottom of the

calling diagram while higher depths are at the top. The strategy learned can be interpreted

as an iterative deepening search: it is a form of minimax search which looks ahead until the

completion of the game. This interpretation of the learned strategy supports results from

Subsection 6.5.3: a minimax strategy is a general strategy which can be applied to a wide

range of two-player games. What is interesting is that a same system can rediscover a usual

and effective strategy that can be applied to different games, which is not true of reinforcement

learning systems learned models.

Even though this learned strategy is complex to understand due to the presence of negations

and dependencies, especially for larger depths, it offers insights which allow to understand

its execution. By opposition, none of the reinforcement learning systems studied can provide

similar explanation of the moves chosen. The reinforcement learning systems tested have an

implicit representation of the problem and their learned strategy is encoded into parameter

values. In this sense, their meaning is more obscure and difficult to decrypt. Moreover, they do

not rely on background knowledge. For instance, no geometrical concepts have been encoded.

Conversely, MIGO benefits from background knowledge which describes the notion of winning,

and from which it extracts a concept of alignment. The fact that the strategy is based on

background knowledge allows some degree of explanability. Still, the background knowledge

provided is abstract enough which allows playing a wide range of games and supports transfer

learning.

We refer to Michie’s criteria described in Section 2.3.9 for evaluating the performance of Machine

Learning systems. MIGO ’s predictive performance augments with increasing amount of data

and learned hypotheses are provided in symbolic form. Therefore, MIGO verifies the weak and
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Depth

1win_1/2 draw_1/2

win_2/2 draw_2/2

win_3/2 draw_3/2

2

3

win_1_1_1/2

win_2_1_1/2

win_3_1_1/2 draw_3_1_10/2

draw_2_1_1/2

draw_1_1_3/2

draw_4/24

draw_4_1_2/2

Figure 6.5: Calling diagram of Learned Strategies

strong criteria. It remains to evaluate whether MIGO can fulfil the ultra-strong criterion. It is

first notable that the rules shown in Table 6.2 provide a certain form of explanation. Although

larger depths are more complex to understand, all rules can be translated into English as a chain

of relations and features explaining the decisions. These insights are a significant advantage

compared to reinforcement learning approaches which can not provide similar understandable

explanations. To test the ultra-strong criterion, an operational definition of comprehensibility

of hypotheses has been proposed [Muggleton et al., 2018b]. This operational measure is based

on empirical tests involving human participants. Experimental participants are presented with

explanation based on a logic program hypothesis and are given time to study it. Their degree of

comprehension of this hypothesis is assessed as the mean accuracy with which a participant can

classify new material sampled randomly from the hypothesis’s domain. The explanatory effect

is evaluated as the impact of explanations on human comprehensibility: it is the difference in

comprehensibility between a human population aided by machine learned explanation and a

human population studying the data alone.

A variant of MIGO has been tested for the ultra-strong criterion [Ai et al., 2021]. Results

indicate that machine learned explanations can facilitate human understanding and learning.

In some circumstances, human learning aided by a symbolic machine learned theory achieves

significantly higher performance than the self-learning human population. For instance, being

provided with machine learned explanations improves textual answer quality for depth 2 of

human participants which indicates that explanations have a beneficial explanatory effect in
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Hexapawn3 OX Hexapawn4

MIGO mixed learning 3.0.10−3 1.5.10−1 3.9
MIGO separated learning 2.8.10−3 8.9.10−2 3.8

MENACE / HER 2.7.10−4 1.5.10−3 /
Q-Learning 1.9 .10−3 2.3.10−1 2.7 .10−1

Deep Q-Learning 1.7.10−2 2.4.10−1 2.1 .10−1

Table 6.3: Average CPU time (seconds) of one iteration: it includes learning a strategy and
executing a move from this strategy.

this case. However, machine learned explanations lead to degradation of human performance

when explanations are not of appropriate complexity. For instance, participants in the machine-

aided group have reduced performance for depth 3 questions after receiving explanations based

on the learned win_3/2 predicate compared to the self-learning group. Finally, providing

explanations of a theory which does not reduce the executional cognitive cost neither does lead

to a beneficial explanatory effect. For instance, no significant beneficial explanatory effects has

been observed for depth 1 since the learned strategy does not provide any helpful executional

short-cut.

6.5.5 Running Times

Average running times of one iteration are presented in Table 6.3 for the experiment presented

in Subsection 6.5.2. Games are ordered by increasing complexity measured as the maximum

depth. These results show running time increases rapidly with the game complexity for MIGO.

This reflects the increasing execution time of the learned strategy which is not efficient. MIGO ’s

learned strategy conducts a deep evaluation which requires a complete search through the corre-

sponding game sub-tree to decide whether a move leads to a win. This strategy is equivalent to

a minimax search. Therefore, the time complexity is a function of the number of possible moves

and the depth of the game tree, which limits scalability. In particular, it prevents transferring

this strategy to non-evaluable games in which computing minimax evaluation in intractable.

This learned strategy is applicable to evaluable games, which is the domain MIGO was trained

on. Future work is needed for MIGO to learn strategies for non-evaluable games. Although

running time of one iteration is longer for MIGO, cumulative running time to reach convergence
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is smaller for MIGO compared to Q-learning and Deep Q-learning, for Noughts-and-Crosses

and Hexapawn3 and of the same order than HER for Hexapawn3 since MIGO requires fewer

examples to converge. Follow-up work has evaluated a variant of MIGO which optimises the

execution time for hypothesised programs [Ai et al., 2021]. Selection of hypotheses is based on

the efficiency of hypothesised programs and is performed using Metaopt [Cropper and Muggle-

ton, 2018]. The efficiency of hypotheses is evaluated as the tree cost which measures the size

of the SLD-tree searched when a program is given a goal. In addition, the strategy learned

by this variant of MIGO uses heuristic short-cuts which helps efficiently pruning branches in

the game tree. An example of a heuristic is the additional primitive number_of_pairs/3. This

primitive depicts the number of pairs of a player on a given state of Noughts-and-Crosses.

6.6 Future Work

We identify the following limitations of these contributions which could be addressed as future

work.

More complex games We have restricted the scope of this work to evaluable games. Future

work needs to be conducted to scale up MIGO to learn strategies for non-evaluable games.

A first limitation to scalability is the restriction imposed by the initial Assumption 6.1: the

current version ofMIGO requires an optimal opponent, which is intractable in large dimensions.

Addressing this issue will require to relax Theorems 6.1 and 6.2. A solution could be to learn

from repeated self-play, in which the algorithm learns by playing against successive versions of

itself and thus does not require an expert player as opponent.

Another limitation to scalability is the complexity dependence on the depth of the game. We

have observed in our experiments that the learning time increases with the depth of the game

due to increasing execution time of the learned strategies. The learned strategy conducts a

form of minimax search whereas checking all possible paths in a game tree is inefficient for

complex problems. Alternatively, we suggest complex games can be broken up into different
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sub-games corresponding to the achievement of sub-goals identified with intermediate rewards.

The learning will include ways of combining sub-games strategies into a top-level strategy.

Moreover, hypotheses can be preferred depending on their efficiency [Cropper and Muggleton,

2018] and the search can be improved incorporating heuristic tests [Ai et al., 2021].

Our experimental results have evaluated the performance of MIGO over two evaluable games

and have demonstrated its strengths. Future work is needed to test our approach on a wider

range of games. For instance, the General Game Playing framework [Genesereth et al., 2005;

Genesereth and Thielscher, 2014] contains hundreds of games with great variety. This dataset

includes different types of games with varying number of players, complexity, games with com-

plete or partial information, simultaneous or alternating play and thus this dataset provides a

relevant and challenging and relevant test-bed.

Over-generalisation One limitation of the learning system presented is the risk of over-

generalisation due to the lack of negative examples. The learned strategy presented is not

exactly optimal and the Cumulative Minimax Regret derivative does not exactly converge to

the optimal value 0. As future work, the implementation could be extended to include a more

thorough context for learning from positive examples only [Muggleton, 1996]. An alternative

is to extend our credit assignment protocol portrayed by Theorem 6.1 and 6.2 to also identify

negative examples for the tasks of winning and drawing.

Transfer Learning We have experimentally demonstrated in Chapter 6 that MIGO can

transfer the strategy learned in a simple domain to a more complex one. Transferring the

strategy from a different domain was beneficial in this scenario and led to faster convergence in

the target domain. However, the games we have considered share a similar winning strategy.

Future work will need to be conducted to evaluate whether transfer learning is possible between

more distant domains for which only part of the transferred strategy is useful in the target

domain. The objective is to test for possible negative transfer effects resulting from the transfer

of imperfect, incomplete or irrelevant concepts. We believe MIGO can leverage the hierarchical

decomposition of learned strategies to retain and reuse only useful invented predicates and
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forget irrelevant ones. In this case, the knowledge transfer would only change the bias. New

tasks would be solved using concepts from several previously encountered tasks combined in a

novel way. A related direction for future work is the revision of the strategy learned in a first

domain to fit the target domain. Such revision methods could be based on the ABC Repair

system [Li et al., 2018].

Despite these limitations, we believe our contributions introduced in this Chapter open encour-

aging opportunities for machine learning game strategies.

6.7 Summary

This Chapter has introduced a novel logical system namedMIGO for learning optimal strategies

for two-player evaluable games. MIGO is a MIL learner. MIGO learns from playing, its actions

affect the subsequent data it receives and thus its current strategy shapes the instance space.

We have claimed and demonstrated thatMIGO achieves lower sample complexity and improved

learning performance compared to reinforcement learning systems and that MIGO addresses a

number of drawbacks inherent in current reinforcement learning systems.

First, our experiments have demonstrated that MIGO achieves significantly lower Cumulative

Minimax Regret compared to Deep and classical Q-Learning and that MIGO outperforms these

systems in terms of sample efficiency. MIGO can generalise over board states and each rule

learned is applicable to a range of board states. Conversely, Q-learning identifies parameters

which are unique for each action from each state and accordingly require very large training

sets to converge. Deep Learning can generalise over states but inherently requires large training

sets. Moreover, MIGO is based on Dependent Learning and can reuse rules acquired for smaller

depths to build more complex rules. MIGO can make use of similarities between situations and

combine previously learned knowledge accordingly. In this sense, Dependent Learning helps

to shape the hypothesis space to guide learning. It introduces a bias toward previously used

predicates which in turn improves the learning efficiency.

Moreover, we have demonstrated that strategies learned with MIGO are transferable to more
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complex games with significantly less retraining. MIGO learns rules which are general enough

to be applicable to a variety of games. Conversely, the reinforcement learning systems tested

are brittle. They lack the ability to reason on an abstract level which prevent them to perform

transfer learning, even between very similar tasks.

Finally, strategies learned with MIGO have been shown to provide some form of explanability.

Moves chosen can be associated with a human comprehensible description of relations and

features tracing the reasons that led to this decision. Conversely, the reinforcement learning

systems evaluated operate in a largely opaque way. We believe having access to some form of

explanation is a step toward greater transparency, essential in domains in which trustworthiness

and verifiability are necessary, and therefore constitutes a considerable advantage compared to

reinforcement learning systems.

This Chapter has demonstrated a method to revise both the instance space and the hypothesis

space to improve the sample complexity and learning performance in MIL, thus supporting

Subthesis S.3. The next Chapter 7 summarises the contributions presented in this thesis,

concludes this thesis and discusses directions for future work.
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Conclusions and Future Work

In this Chapter, we conclude this thesis, review our contributions introduced in the previous

chapters and discuss directions for future work.

7.1 Conclusions

7.1.1 Motivation and Claims

This thesis is concerned with the induction of hypotheses, as logic programs, from examples.

Induction is a prime ability of human intelligence and is the ambition of Machine Learning.

However, induction is inherently complex due to large search spaces. ILP is a form of Machine

Learning for inducing logic program hypotheses generalising specific observations. ILP benefits

from the high expressivity of logical representation languages. Moreover, ILP systems can

make use of inductive bias and background knowledge which provides high data-efficiency.

Finally, learned models are expressed in logical form which facilitates comprehensibility. We

have focused more specifically in this thesis on MIL, which is a state-of-the-art form of ILP.

MIL supports predicate invention, learning of complex theories involving recursions, first-order

and higher-order definitions. However, current MIL approaches have limited efficiency: MIL

has a sample complexity polynomial in the size of learned programs and a learning complexity

135
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exponential in the size of learned programs. We have investigated in this thesis revision methods

to achieve more efficient MIL. We have claimed that improvements over the sample and learning

complexity in MIL can be achieved through:

(Subthesis S.1) methods that revise the instance space,

(Subthesis S.2) methods that revise the hypothesis space and

(Subthesis S.3) methods that revise both the instance space and the hypothesis space.

The instance space is the set of items over which hypotheses are defined. It is the set of possible

examples. Subthesis S.1 claims that there exist methods revising the instance space in MIL

which can guide the selection toward informative examples. The hypothesis space is the set

of hypotheses that can be formulated and may be output by the learner. Subthesis S.2 claims

that there exist methods revising the hypothesis space in MIL which can guide the search for

consistent hypotheses. Finally, Subthesis S.3 states that there exist methods revising both the

instance and hypothesis space in MIL which can improve the sample and learning efficiency in

MIL.

7.1.2 Contributions

To support our claims, we have introduced one method for each of the categories above. We have

theoretically and experimentally evaluated their sample and learning efficiency. Specifically, we

have made the following contributions in theory, methods, implementation and applications of

MIL.

We have presented in Chapter 4 a method which revises the instance space with active learning

in MIL and aimed at learning agent strategies. The learner chooses experiments and queries

their label to an oracle. We have demonstrated this method can require significantly less

labelled data to converge toward agent strategies. This method extends Bayesian MIL into

Active Bayesian MIL. An Active Bayesian MIL learner allocates a posterior distribution over

the hypothesis space. It samples a set of consistent hypotheses from this posterior distribution
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using meta-interpretation. It computes the entropy of candidate instances from this set of

sampled hypotheses. Then, it selects an instance with maximum entropy among the set of

candidate instances. This instance is maximally informative and discriminative with respect to

the remaining competing hypotheses. Therefore, the active learning strategy which consists of

the selection of high entropy instances can reduce the sample complexity. We have theoretically

demonstrated that the probability of selecting an instance with globally maximal entropy over

the instance space for an active learner is N times the one of a passive learner, where N is the

number of unlabelled instances available. We have provided and described an implementation

of Active Bayesian MIL. We have experimentally demonstrated the number of experiments to

perform to reach an arbitrary accuracy level can at least be halved with Active Bayesian MIL

compared to Passive Bayesian MIL when learning agent strategies. These contributions support

Subthesis S.1.

We have introduced in Chapter 5 a method to revise the hypothesis space in MIL based on

predicate invention. The learner generates in a pre-processing step a set of invented predicates.

These predicates can be reused during the construction of a consistent hypothesis. Owing to

the reuse of these invented predicates, the target hypothesis has fewer clauses and therefore

is easier to learn. These invented predicates are generated bottom-up from the background

knowledge. In MIL, the background knowledge contains meta-rules which are second-order

clauses. This second-order program background knowledge is generalised with an extension of

the immediate consequence operator for second-order logic programs. The learner attempts to

resolve body literals in meta-rules using the current background knowledge. For each successful

resolution, a Skolem constant is generated and is bound to a potential second-order variable in

the meta-rule head. This Skolem constant represents a new predicate symbol which definition is

given by the associated meta-substitution. This definition is saved in the background knowledge

and this process is iterated. The learner thus produces a set of invented predicates which can

be reused when constructing a consistent hypothesis. We have defined an equivalence relation

between predicates based on equivalence of success sets and we have used it for eliminating

redundant predicates. We have theoretically derived an upper bound over the number of new

predicates symbols introduced. We have theoretically demonstrated our bottom-up method
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is complete with respect to a fragment of dyadic Datalog. We have provided and described

an implementation of our predicate invention method. We have theoretically and experimen-

tally demonstrated this method can improve the learning and sample efficiency in MIL. These

contributions support Subthesis S.2.

We have introduced in Chapter 6 a MIL learner called MIGO aimed at learning optimal game

strategies for two-player games. MIGO learns from playing and obtains examples by executing

its current strategy. Thus, instance selection is directed toward regions identified with its cur-

rent strategy. Moreover, MIGO uses Dependent Learning to revise its hypothesis space. MIGO

first learns strategies for smaller depths, and progressively learns winning strategies for larger

depths. It thus constructs a hierarchical series of predicates with increasing level of abstraction.

Lower-level predicates can be reused when building increasingly complex predicates which pro-

motes learning and sample efficiency. Given sufficient play and when playing against an optimal

opponent, MIGO learns optimal strategies for evaluable games. One advantage of considering

evaluable games is that there is a tractable approach to calculating Minimax Regret, which

provides an absolute measure for evaluating and comparing the performance of learning algo-

rithms. We have provided and described an implementation of MIGO. We have used evaluable

games to compare Cumulative Minimax Regret for variants of reinforcement learning against

our system MIGO. We have experimentally demonstrated that MIGO achieves significantly

lower Cumulative Minimax Regret compared to Deep and classical Q-Learning. In addition,

we have experimentally demonstrated that strategies learned withMIGO are transferable in be-

tween different games. Finally, the strategies learned by MIGO are comprehensible to humans.

These contributions support Subthesis S.3.

7.2 Future Work

We identify the following research directions which could be investigated as future work to

address limitations of this thesis.
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7.2.1 Revising the instance space

Active Learning Strategy In Chapter 6, we have demonstrated MIGO achieves signifi-

cantly lower sample complexity compared to the reinforcement learning systems tested. MIGO

chooses its moves by executing its current learned strategy which directs instance selection.

Future work is needed to evaluate whether active learning could further help to reduce the

sample complexity. An active learner could choose an initial board to start the game from.

This choice could be based on an expected information gain criterion.

In Chapter 4, we have presented an active learning query strategy based on an expected infor-

mation gain criterion evaluated from the entropy. We have demonstrated this query strategy

can halve experimental costs. Future work could investigate and compare different active

learning query strategies. However, the performance of query strategies is likely to rely on the

characteristics of the problems and datasets on hand and may even vary over time as more

instances are being labelled. Therefore, an interesting perspective for future work is to learn

adequate query strategies as a form of meta-learning instead of relying on pre-set choices. For

instance, a master strategy can be identified online as a combination of an ensemble of active

learning heuristic strategies with the help of multi-armed bandit algorithms [Baram et al., 2004;

Hsu and Lin, 2015]. In [Ebert et al., 2012], the active learning strategy is learnt as a feedback-

driven Markov decision process combining exploitation and exploration criteria with adaptive

and time-varying trade-off. Alternatively, the active learning strategy can be treated as a

regression model for which parameters are learned and which predicts the reduction in gener-

alisation error that can be expected by querying the label of a data point [Konyushkova et al.,

2017].

Sampling process In active learning, it is usually assumed that the learner has access to

a pool of instances sampled beforehand according to a predefined distribution, as it was the

case in Chapter 4. Sampling is essential to overcome potentially infinite instance spaces and

for efficiency considerations. For instance, when learning game strategies as in Chapter 6, an

active learner could choose a board to start the game from. Since the size of the instance space
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increases with the complexity of the game, the choice of initial boards to start the game from

may become intractable without sampling. However, as Lemma 4.1 showed, the existence of

informative instances among a sampled set of instances relies on the size of the pool. Therefore,

there is a trade-off between the existence of highly informative instances in the pool and the

efficiency of the search for informative instances within the pool. We suggest future work could

be conducted to investigate improvements over the sampling process of instances to balance

this trade-off. For instance, future work could study whether adaptive sampling strategies

can improve the informativeness of sampled instances and in turn the sample complexity. In

[Dasgupta and Hsu, 2008], the system exploits cluster structure in the data to guide sampling

toward informative clusters. More generally, adaptive sampling processes could allow navigating

the instance space efficiently and informatively. The sampling distribution will be updated at

each iteration to incorporate newly acquired information and be representative of the current

version space. The sampling distribution will be directed toward regions of interest in the

experimental design space. These regions of interest can, for instance, be identified as high

surface variance areas in the predictions.

A sampling process suggests the possibility to synthesise instances de novo [Angluin, 1988]. A

challenge is that experiments generated and invented by the learner need to be practically real-

isable and their outcome interpretable. However, it has been shown that artificially generated

queries are not always interpretable and can not always be labelled reliably by humans oracles

[Baum and Lang, 1992].

7.2.2 Revising the hypothesis space

Repairing hypotheses In both Chapters 4 and 6, after a new training instance is added to

the training set, new consistent hypotheses are generated from scratch. Alternatively, consistent

hypotheses could be generated by repairing hypotheses consistent with the previous training set.

Future work needs to be conducted to investigate whether hypothesis repair can provide a more

efficient hypothesis generation process. Repairing aims at automatically detecting faults, such

as inconsistency, incompatibility or insufficiency, and possible fix to alleviate conflicts with
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observations. For instance, belief revision [Gärdenfors and Rott, 1995] includes mechanisms

for re-establishing consistency after receiving new information, these mechanisms involve the

deletion or modification of sentences. Reformation [Bundy and Mitrovic, 2016] additionally can

suggest changes to the language. The ABC repair system [Li et al., 2018] can repair Datalog

theories by combining abduction, belief revision and reformation. In general, multiple repairs

may be possible and a challenge is to identify optimal repairs [Urbonas et al., 2020]. The

identification of repairs of these forms could be investigated as future work to efficiently form

new consistent hypotheses.

Selection of relevant predicates We have demonstrated in Chapter 5 that performing

bottom-up iterations can result in a sample complexity gain when the condition expressed

in Proposition 5.1 is fulfilled. However, this condition depends on the number of predicates

introduced. We have proposed a criterion for eliminating redundant predicates but we have not

provided a guarantee that it results in the fulfilment of the condition expressed in Proposition

5.1. Similarly, in Chapter 6, the learning system MIGO performs Dependent Learning and

systematically saves all learned predicates in the background knowledge. Both these situations

can lead to a catastrophic remembering problem: the background knowledge monotonically

grows due to the inability of the learner to forget knowledge and this can overwhelm the

search. Future work is needed to devise a more discriminative selection of relevant predicates.

In Chapter 5, we have proposed a relevance criterion for eliminating irrelevant predicates. This

criterion was based on the equivalence of their success sets. Future work is needed to investigate

the relaxation of this criterion to the agreement of success sets up to some tolerance threshold.

Given ε > 0 and δ > 0, two predicates are said to be ε,δ-equivalent if their success sets agree on

a high proportion of the instance space 1− ε with high probability 1− δ. Alternative relevance

criteria can be based on the frequency of usage across tasks in a continuous learning setting

or on the syntactical uniqueness of the learned definition after an unfold operation [Cropper,

2020]. Finally, we suggest prioritising invented definitions using heuristic tests based on the

compression of the proofs of positive examples [Vyskočil et al., 2010].
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Learning Bias Chapter 4 has focused on learning in a Bayesian setting. However, we have as-

sumed that a prior probability for each candidate hypothesis was known and provided as input,

and that this distributional bias was fixed. Chapter 5 has introduced a method for bias shift

which automatically builds a set of intermediate concepts to solve a task more efficiently. In

Chapter 6, MIGO performs bias shift and identifies invented predicates useful to solve multiple

related tasks more efficiently. However, neither Chapter 5 nor Chapter 6 benefit from the flex-

ibility of the Bayesian representation. Moreover, in these chapters, distributional assumptions

over the hypothesis space are implicit and fixed. Future work could investigate learning explicit

distributional Bayesian bias. This problem considers a learner embedded within an environment

of related tasks sampled from the same underlying probability distribution. This learner aims at

automatically learning a bias, as a distribution over the hypothesis space, that is appropriate for

the environment of all tasks. The learner acquires information about the environment by solv-

ing tasks sampled from the hypothesis space after observing examples sampled for each learning

problem from the instance space. Bias learning is a form of learning to learn [Baxter, 1998;

Baxter, 2000]. Within Bayesian MIL [Muggleton et al., 2014], a probability distribution over

the hypothesis space can be defined by assigning a sampling probability to each primitive pred-

icate and each meta-rule. In this case, learning a bias involves the identification of probability

parameters for each primitive predicate and meta-rule and the automatic selection of additional

relevant invented predicates. Selection of relevant predicates will be based on the difference

between the probabilities of sampling a definition and the frequency of usage of this definition

observed in previous tasks. The idea is to choose which predicates to include in the background

knowledge, and which probability to assign them, based on the difficulty of relearning them

and their usage, expressed as sampling probabilities.

7.2.3 Meta-Interpretive Learning

Handling noise We have assumed in our experiments noise-free data. For instance, we have

assumed in Chapter 4 the oracle makes no mistake when labelling examples. However, the obser-

vation of the outcome of real-world experiments may contain errors. Similarly, we have assumed
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in Chapter 5 that the background knowledge was correct and relations it contains were true.

Conversely, in most practical applications, data might be imperfect and include inaccuracies in

the examples, the background knowledge or both [Nienhuys-Cheng, 1997]. Noisy examples can

be identified using the minimal description length [Rissanen, 1978]: because noisy examples

thwart regularities, the simplest correct theory for a given set of examples has significantly

lower complexity if removing noisy examples from that set. For instance, Progol [Muggleton,

1995] deals with noisy data by using a compression measure to trade-off the description of er-

rors against the hypothesis description length. More generally, most ILP systems based on set

covering naturally support noise handling [Cropper and Dumančić, 2022]. Alternatively, a noise

tolerant version of Metagol [Muggleton et al., 2018a] finds hypotheses consistent with randomly

selected subsets of the training examples, evaluates each resulting hypothesis on the remaining

part of the training set, and returns the hypothesis with the highest score. The noise-tolerant

version of ILASP [Law et al., 2018] uses ASP’s optimisation ability to provably learn the pro-

gram with the best coverage. Neural approaches [Evans and Grefenstette, 2018] naturally can

handle noisy input data. Future work will need to be conducted to investigate handling of

noisy examples in MIL using ensemble methods or representing uncertainty about the exam-

ples with probabilistic approaches. Similarly, future work could incorporate uncertainty about

the background knowledge in the form of probabilities. An interesting perspective is to extend

the immediate consequence operator introduced in Chapter 5 to make use of probabilities in

the learned definitions. Probabilistic Inductive Logic Programming is a framework introducing

probabilistic reasoning into logic programs to represent uncertain information [De Raedt and

Kersting, 2008].

Probabilistic MIL We have considered in Chapter 4 that experiments are the observation of

a deterministic binary output for a particular set-up. Chapter 6 has considered fully-observable

deterministic games which do not involve randomness. Future work will be needed to account

for possible randomness in the experimental observations. Experiments could be represented

as probabilistic observations from which the aim is to learn probabilistic rules. Probabilistic

Inductive Logic Programming representations [De Raedt and Kersting, 2008] extends the back-
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ground knowledge and examples with probabilities indicating the degree of confidence in its

correctness. For instance, Stochastic Logic Programs [Muggleton, 1996] or Problog [De Raedt

et al., 2007] provide frameworks to capture uncertainty in the form of explicit probabilities.

Stochastic Logic Programs define a distribution over derivations, clauses are annotated with

probabilities representing the probability of being sampled from the model. Conversely, Problog

programs define a distribution over logic programs by specifying for each clause the probability

that it belongs to a randomly sampled program. In this case, probabilities represent degree

of belief and are mutually independent. Learning probabilistic relational models involves max-

imising a probabilistic score, such as the likelihood of correctly covering the examples. For

instance, in Bayesian MIL, a super imposed logic program can be formed by labelling each arc

with the sum of the posterior probabilities of sampled hypotheses containing that arc [Mug-

gleton et al., 2013]. Such a learned model can be scored on a test set based on the sum of log

posterior probabilities computed as the sum of the prior of the model and the likelihood of the

observations given the model. Alternatively, ProbFOIL+ [De Raedt et al., 2015] extends FOIL

[Quinlan, 1990] and learns probabilistic programs from probabilistic examples and background

knowledge. We suggest future work is needed to investigate MIL of probabilistic programs.

Applications The string transformation experiment described in Chapter 5 is inspired from

real-world problems. However, experiments presented in Chapters 4 and 6 and the chess exper-

iment presented in Chapter 5 take place in controlled environments. Further experiments could

aim at demonstrating the scalability of our contributions over a wider range of domains associ-

ated with more realistic problems including real-world datasets. In Chapter 4, our framework

has been evaluated on artificial domains. We believe our active learning framework presented

is valuable for multiple applications in various AI domains in which acquiring labelled obser-

vations has some costs, for instance the modelling of robotic, animal or human behaviour. In

Chapter 5, the scalability of our approach is limited by the monotonic increase of the number

of predicate symbols and the complexity reliance over the number of constant symbols. Fu-

ture work will be needed to investigate how an improved selection of relevant predicates and

a reduced dependence on the number of constant symbols can improve scalability. Potential
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future applications of our method include learning more complex game strategies. In Chap-

ter 6, we have considered a limited and simple set of evaluable games, in which the Minimax

Regret can be evaluated. Future work could aim to demonstrate the capabilities of MIGO

over a wider range of games. The General Game Playing framework [Genesereth et al., 2005;

Genesereth and Thielscher, 2014] evaluates an agent’s general capability to learn any arbitrary

game and provides a challenging test bed. Similar to MIGO, General Game Players are given

the rules of a game. These rules specify the initial game states, what constitutes legal moves,

how moves update the game state, how the game terminates and what the outcome is. The

performance is evaluated as the total score over all games. To sum up, the frameworks pre-

sented in this thesis have been demonstrated suitable for accurately identifying known target

strategies, which was necessary to validate the performance. In the future, these frameworks

could be used to uncover logic programs representing unknown and novel scientific knowledge.

Future work could aim at inducing novel agent strategies and game strategies.

Virtual Conventional Learning We have demonstrated in Chapter 6 that the learned

game strategies can provide some form of comprehensibility. Visual and verbal explana-

tions were generated from the learned strategy and presented to human participants [Ai et

al., 2021]. However, human-computer communication was fixed and limited. More generally,

human-computer interaction presently is rigid and requires humans to adapt their behaviour

to inflexible pre-programmed communication protocols. By contrast, human-human interac-

tion uses flexible and adaptable communication protocols developed instantaneously. Recent

work in cognitive psychology describes the human ability to spontaneously develop new ef-

fective and creative communication protocols for joint problem-solving [Misyak et al., 2016;

Chater and Misyak, 2021]. These communication protocols are virtual conventions: they are

virtually negotiated and emerge from limited non-verbal interactions, yet they are equivalent

to more explicitly negotiated protocols [Misyak and Chater, 2014]. These protocols can be used

with great flexibility and may be changed and reshaped during acquisition and use. Recent

work shows that virtual conventions can be replicated in a logic-based representation and be

adapted as revision of pre-existing conventions [Bundy et al., 2021]. Future work could aim
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at learning virtual conventions. Machines virtually negotiate with humans or other machines,

resulting in the mutual learning of explainable virtual conventions for effective interactions

between humans and computers under limited communication. Learning virtual conventions

involves a cooperative game between two agents, each having incomplete knowledge of both

the rules and appropriate strategies for effective play. At the end of each game sequence, the

outcome of the game is provided to both players as a measure of joint success. These outcomes

could be used by an extension of the system MIGO presented in Chapter 6 to generate measur-

ably comprehensible conventions. These conventions could be learned as game strategies and

facilitate rapid interactions between agents in bandwidth limited situations.

7.3 Summary of Thesis Achievements

We have considered in this thesis the problem of inducing hypotheses, as logic programs, from

examples. ILP is a form of Machine Learning for inducing logic program hypotheses that

generalise examples. MIL is a state-of-the-art ILP approach which supports predicate invention,

learning of recursive programs and learning of higher-order programs. However, current MIL

approaches suffer from limited efficiency: the sample complexity is polynomial in the size of

learned programs and the learning complexity is exponential in the size of learned programs.

We have investigated in this thesis methods to achieve more efficient MIL. Specifically, we have

introduced methods that revise the instance space, methods that revise the hypothesis space and

methods that revise both the instance space and the hypothesis space to achieve more efficient

MIL. We have demonstrated these methods can improve the sample and learning efficiency in

MIL. First, we have introduced Active Bayesian MIL which supports automated experiment

selection with active learning. We have demonstrated Active Bayesian MIL can significantly

reduce the sample complexity in MIL. Second, we have introduced a novel predicate invention

method based upon an extension of the immediate consequence operator to second-order logic

programs. This method generates a set of reusable predicates in a pre-processing step. We have

demonstrated this method can reduce the sample and learning complexity in MIL. Finally, we

have introduced a novel MIL system for learning optimal strategies for two-player evaluable
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games. Our system learns from playing: instance selection is guided by the current learned

strategy. Moreover, the learning task is divided into interrelated subtasks which are jointly

learned thus changing the bias. We have demonstrated our system achieves significantly lower

sample complexity and improved learning performance compared to reinforcement learning

systems.

We believe the contributions of this thesis open new inspiring perspectives for learning more

efficiently theories with MIL in a wide range of applications including robotics, modelling of

agent strategies and game playing.
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