
Relational Program Synthesis
with Numerical Reasoning

Céline Hocquette, Andrew Cropper
University of Oxford

Motivation: learning programs with numerical values

zendo(Structure) ← piece(Structure,Piece1),
contact(Piece1,Piece2),
size(Piece2,Size),
geq(Size,7).

Motivation: learning programs with numerical values

pharma3(Molecule) ← zincsite(Molecule,Zinc),
hacc(Molecule,Hydrogen),
dist(Molecule,Zinc,Hydrogen,Distance),
geq(Distance,1.7),
leq(Distance,3.5).

pharma3(Molecule) ← hacc(Molecule,Hydrogen1),
hacc(Molecule,Hydrogen2),
bond(Molecule,Hydrogen1,Hydrogen2,du),
dist(Molecule,Hydrogen1,Hydrogen2,Distance),
leq(Distance,2.7).

Related Work
- Existing approaches:

- cannot scale to infinite domains (ASPAL, ILASP, HEXMIL, ProSynth, Popper, δILP)

- cannot reason from multiple examples jointly (Progol, MagicPopper)

- cannot learn chained numerical literals sharing variables (Aleph)

- cannot learn recursive programs, optimal programs (textually minimal) (Progol,
Aleph)

Our approach
Program synthesis approach to learn programs with numerical values

- infinite and continuous domains
- complex numerical reasoning
- reason from multiple examples

Decompose the learning task in two stages:

- Program search: generate partial hypotheses with variables in place of numerical
values

- Numerical search: searches for numerical values to fill in the numerical variables.

Our approach
Program search: generate partial hypotheses with variables in place of
numerical values

H : f(List) ← length(List,Length), leq(Length,N), @numerical(N)

Our approach
Numerical search: searches for numerical values to fill in the numerical
variables.

Our approach

- finds values for the intermediate variables given the positive and negative
examples

H : f(List) ← length(List,Length), geq(Length,N), @numerical(N)

SP(Length) = {5, 4} and SN(Length) = {3, 2} Positive Negative

f([3,7,8,2,4])
f([2,7,0,1])

f([8,0,4])
f([1,2])

Our approach

- translates the numerical search as a SMT formula

H : f(List) ← length(List,Length), geq(Length,N), @numerical(N)

SP(Length) = {5, 4} and SN(Length) = {3, 2} Positive Negative

f([3,7,8,2,4])
f([2,7,0,1])

f([8,0,4])
f([1,2])5 ≥ N ∧ ¬(2 ≥ N)∧ 4 ≥ N ∧ ¬(3 ≥ N)

Our approach

- substitutes numerical variables with a solution to the SMT formula

H : f(List) ← length(List,Length), geq(Length,N), @numerical(N)

SP(Length) = {5, 4} and SN(Length) = {3, 2} Positive Negative

f([3,7,8,2,4])
f([2,7,0,1])

f([8,0,4])
f([1,2])5 ≥ N ∧ ¬(2 ≥ N)∧ 4 ≥ N ∧ ¬(3 ≥ N)

f(List) ← length(List,Length), geq(Length,4)

Implementation

We implement our approach in NumSynth:

- It is based on the program synthesis system Popper.

- It uses the SMT solver Z3 in the numerical search stage.

Implementation: built-in numerical literals

Implementation: supported fragments

Experiments

Q1: Can NumSynth learn programs with numerical values?

Q2: How well does NumSynth perform compared to other
approaches?

Q1: comparison with other approaches

Predictive accuracies

Q1: comparison with other approaches

Learning times

Q1: comparison with other approaches

➢ NumSynth can learn programs with numerical values

➢ NumSynth can outperform existing approaches in terms of
learning times and predictive accuracies

Experiments

Q3: How well does NumSynth scale with the number of
examples?

Q3: scalability with respect to the number of examples

zendo1 pharma2

Q3: scalability with respect to the number of examples

➢ NumSynth can scale well better than Aleph and
MagicPopper with respect to the number of examples

➢ Numerical search stage can be expensive and limit
scalability

Conclusion
NumSynth, approach to learn programs with numerical values. It can:

- outperform state-of-the art approaches,

- learn in infinite and continuous domains,

- learn optimal programs and recursive programs.

Future Work and Limitations

● Scalability with respect to the complexity of the numerical reasoning stage

● Noise: identify numerical values from noisy examples

References
■ Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set programming. In: Inductive Logic Programming - 21st

International Conference, (2011).

■ Raghothaman, M., Mendelson, J., Zhao, D., Naik, M., Scholz, B.: Provenance-guided synthesis of datalog programs. Proceedings
of the ACM on Programming Languages 4(POPL), (2019).

■ Cropper, A., Morel, R.: Learning programs by learning from failures. Machine Learning 110(4), 801–856 (2021).
■ Hocquette, C.; and Cropper, A. 2022. Learning programs with magic values. Machine Learning.

■ Srinivasan, A.: The ALEPH manual. Machine Learning at the Computing Laboratory (2001).

■ Srinivasan, A., Camacho, R.: Numerical reasoning with an ILP system capable of lazy evaluation and customised search. The
Journal of Logic Programming 40(2), 185–213 (1999).

■ Moura, L. d.; and Bjørner, N. 2008. Z3: An efficient SMT solver. In International conference on Tools and Algo- rithms for the
Construction and Analysis of Systems, 337–340. Springer.

Tasks
zendo4(A):- piece(A,B), size(B,C), geq(C,1.23), leq(C,4.66).
zendo4(A):- piece(A,B), position(B,X,Y), leq(X,3.45), leq(Y,6.87).
zendo4(A):- piece(A,B), contact(B,C), rotation(C,D), leq(D,1.18).

pharma4(A):- zincsite(A, B), hacc(A, C), dist(A, B, C, D), leq(D,4.18),geq(D,2.22).
pharma4(A):- hacc(A, C), hacc(A, E), dist(A, B, C, D), geq(D,1.23), leq(D,3.41).
pharma4(A):- zincsite(A, C), zincsite(A, B), bond(B,C,du), dist(A, B, C, D), leq(D,1.23).

f(A):- head(A,19),tail(A,E),head(E,C),geq(C,27).
f(A):- tail(A,B),f(B).

