
Relational Program Synthesis 
with Numerical Reasoning

Céline Hocquette, Andrew Cropper
University of Oxford



Motivation: learning programs with numerical values

zendo(Structure) ← piece(Structure,Piece1),
contact(Piece1,Piece2), 
size(Piece2,Size), 
geq(Size,7).



Motivation: learning programs with numerical values

pharma3(Molecule) ← zincsite(Molecule,Zinc),
hacc(Molecule,Hydrogen),
dist(Molecule,Zinc,Hydrogen,Distance),  
geq(Distance,1.7),
leq(Distance,3.5).

pharma3(Molecule) ← hacc(Molecule,Hydrogen1),
hacc(Molecule,Hydrogen2), 
bond(Molecule,Hydrogen1,Hydrogen2,du), 
dist(Molecule,Hydrogen1,Hydrogen2,Distance), 
leq(Distance,2.7).



Related Work
- Existing approaches:

- cannot scale to infinite domains (ASPAL, ILASP, HEXMIL, ProSynth, Popper, δILP)

- cannot reason from multiple examples jointly (Progol, MagicPopper)

- cannot learn chained numerical literals sharing variables (Aleph)

- cannot learn recursive programs, optimal programs (textually minimal) (Progol, 
Aleph)



Our approach
Program synthesis approach to learn programs with numerical values

- infinite and continuous domains
- complex numerical reasoning
- reason from multiple examples

Decompose the learning task in two stages:

- Program search: generate partial hypotheses with variables in place of numerical 
values

- Numerical search: searches for numerical values to fill in the numerical variables.



Our approach
Program search: generate partial hypotheses with variables in place of 
numerical values

H : f(List) ← length(List,Length), leq(Length,N), @numerical(N)



Our approach
Numerical search: searches for numerical values to fill in the numerical 
variables.



Our approach

- finds values for the intermediate variables given the positive and negative 
examples

H : f(List) ← length(List,Length), geq(Length,N), @numerical(N)

SP(Length) = {5, 4} and SN(Length) = {3, 2} Positive Negative

f([3,7,8,2,4])
f([2,7,0,1])

f([8,0,4])
f([1,2])



Our approach

- translates the numerical search as a SMT formula

H : f(List) ← length(List,Length), geq(Length,N), @numerical(N)

SP(Length) = {5, 4} and SN(Length) = {3, 2} Positive Negative

f([3,7,8,2,4])
f([2,7,0,1])

f([8,0,4])
f([1,2])5 ≥ N ∧ ¬(2 ≥ N)∧ 4 ≥ N ∧ ¬(3 ≥ N) 



Our approach

- substitutes numerical variables with a solution to the SMT formula

H : f(List) ← length(List,Length), geq(Length,N), @numerical(N)

SP(Length) = {5, 4} and SN(Length) = {3, 2} Positive Negative

f([3,7,8,2,4])
f([2,7,0,1])

f([8,0,4])
f([1,2])5 ≥ N ∧ ¬(2 ≥ N)∧ 4 ≥ N ∧ ¬(3 ≥ N) 

f(List) ← length(List,Length), geq(Length,4)



Implementation

We implement our approach in NumSynth:

- It is based on the program synthesis system Popper.

- It uses the SMT solver Z3 in the numerical search stage.



Implementation: built-in numerical literals



Implementation: supported fragments



Experiments

Q1: Can NumSynth learn programs with numerical values?

Q2: How well does NumSynth perform compared to other 
approaches?



Q1: comparison with other approaches

Predictive accuracies



Q1: comparison with other approaches

Learning times



Q1: comparison with other approaches

➢ NumSynth can learn programs with numerical values

➢ NumSynth can outperform existing approaches in terms of 
learning times and predictive accuracies



Experiments

Q3:  How well does NumSynth scale with the number of 
examples?



Q3: scalability with respect to the number of examples

zendo1 pharma2



Q3: scalability with respect to the number of examples

➢ NumSynth can scale well better than Aleph and 
MagicPopper with respect to the number of examples

➢ Numerical search stage can be expensive and limit 
scalability



Conclusion
NumSynth, approach to learn programs with numerical values. It can:

- outperform state-of-the art approaches,

- learn in infinite and continuous domains,

- learn optimal programs and recursive programs.



Future Work and Limitations

● Scalability with respect to the complexity of the numerical reasoning stage

● Noise: identify numerical values from noisy examples
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Tasks
zendo4(A):- piece(A,B), size(B,C), geq(C,1.23), leq(C,4.66).
zendo4(A):- piece(A,B), position(B,X,Y), leq(X,3.45), leq(Y,6.87).
zendo4(A):- piece(A,B), contact(B,C), rotation(C,D), leq(D,1.18).

pharma4(A):- zincsite(A, B), hacc(A, C), dist(A, B, C, D), leq(D,4.18),geq(D,2.22).
pharma4(A):- hacc(A, C), hacc(A, E), dist(A, B, C, D), geq(D,1.23), leq(D,3.41).
pharma4(A):- zincsite(A, C), zincsite(A, B), bond(B,C,du), dist(A, B, C, D), leq(D,1.23).

f(A):- head(A,19),tail(A,E),head(E,C),geq(C,27).
f(A):- tail(A,B),f(B).


