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1 - Introduction

Learning programs with numerical values is
fundamental to many applications.

zendo(Game) ← piece(Game,Piece1),

contact(Piece1,Piece2),

size(Piece2,Size),geq(Size,7).

pharma3(Mol) ← zincsite(Mol,Zinc),

hacc(Mol,Hydro),

dist(Mol,Zinc,Hydro,Dist),

leq(Dist,3.58),geq(D,1.78).

pharma3(Mol) ← hacc(Mol,Hydro1),

hacc(Mol,Hydro2),

dist(Mol,Hydro1,Hydro2,Dist),

leq(Dist,2.78),

bond(Mol,Hydro1,Hydro2,du).

Fig. 1: Example of programs with numerical values.

Existing program synthesis approaches:
1. struggle to identify numerical values from in-

finite domains [2, 1]
2. cannot perform complex numerical reason-

ing such as reasoning over multiple exam-
ples jointly [4, 3]

We introduce an approach, implemented in
NUMSYNTH, which combines relational learn-
ing and numerical reasoning to efficiently learn
programs with numerical values.

2 - Our approach

Key idea: separate the search in two stages. Inspired by ALEPH’s lazy evaluation procedure [5].
1. program search: generate partial hypotheses with numerical variables in place of numerical

symbols: f(List) ← length(List,Length), leq(Length,N), @numerical(N)

2. numerical search: searches for numerical values to fill in the numerical variables.
(a) finds values for the intermediate variable Length given the positive and negative examples:

E+ = {f ( [a, b, c, d , e]), f ( [l , n, t , n])} and E− = {f ( [u, v , w]), f ( [r , s])}
SE+ (Length) = {5, 4} and SE− (Length) = {3, 2}

(b) translates the numerical search as a SMT formula: 5 ≥ N ∧ 4 ≥ N ∧ ¬(3 ≥ N) ∧ ¬(2 ≥ N)

(c) substitutes numerical variables with a solution to the SMT formula:
f(List) ← length(List,Length), leq(Length,3)

3 - Implementation

NUMSYNTH uses a set of built-in numerical lit-
erals (Table 1) to support a large class of arith-
metical fragments (Table 2).

Literal Definition Example
geq(A,N) A ≥ N geq(A,3)
leq(A,N) A ≤ N leq(A,5.2)
add(A,B,C) A + B = C add(A,B,C)
mult(A,N,C) A ∗ N = C mult(A,2,C)

Table 1: Numerical literals in NUMSYNTH. N is a
numerical variable. A, B, C, N are real numbers or
integers.

Fragment NUMSYNTH Example
Linear real arithm. ✓ X + 6.3 ∗ Y ≤ 3
Linear integer arithm. ✓ U + 6 ∗ V ≤ 3
Mixed real / integer ✓ X + 6.3 ∗ V ≤ 3
Integer difference logic ✓ U − V ≤ 4
Real difference logic ✓ X − Y ≤ 4
Unit two-variable ineq. ✓ X + Y ≤ 4
Polynomial real arithm. X X 2 + Y 2 = 2
Nonlinear integer arithm. X U2 = 2

Table 2: Arithmetical fragments supported by NUM-
SYNTH. X and Y are real numbers and U and V
integers.

4 - Experiment 1

Q1 Can NUMSYNTH learn programs with nu-
merical values?

Q2 How well does NUMSYNTH perform com-
pared to other approaches?

Task ALEPH MAGICPOPPER NUMSYNTH

interval 69 ± 1 70 ± 0 99 ± 1
halfplane 99 ± 0 84 ± 7 96 ± 1

zendo1 98 ± 0 68 ± 3 99 ± 0
zendo2 51 ± 1 56 ± 1 96 ± 1
zendo3 71 ± 1 51 ± 1 96 ± 1
zendo4 63 ± 1 52 ± 1 94 ± 1

pharma1 82 ± 1 64 ± 3 99 ± 0
pharma2 83 ± 1 77 ± 2 95 ± 1
pharma3 81 ± 1 82 ± 1 98 ± 1
pharma4 76 ± 1 62 ± 2 92 ± 1

memberin 49 ± 0 75 ± 4 97 ± 1
lastleq 50 ± 0 51 ± 1 98 ± 1
nextgeq 50 ± 0 50 ± 0 92 ± 5

Table 3: Predictive accuracies

Task ALEPH MAGICPOPPER NUMSYNTH

interval 1 ± 0 0 ± 0 0 ± 0
halfplane 1 ± 0 60 ± 26 2 ± 1

zendo1 25 ± 8 timeout 10 ± 1
zendo2 68 ± 18 97 ± 11 17 ± 1
zendo3 106 ± 26 112 ± 9 69 ± 2
zendo4 147 ± 30 timeout 76 ± 2

pharma1 2 ± 0 3 ± 0 1 ± 0
pharma2 10 ± 2 7 ± 0 2 ± 0
pharma3 24 ± 3 66 ± 5 20 ± 1
pharma4 3 ± 0 62 ± 2 20 ± 0

memberin 1 ± 0 161 ± 38 2 ± 0
lastleq 0 ± 0 589 ± 10 13 ± 1
nextgeq 0 ± 0 336 ± 17 39 ± 6

Table 4: Learning times

▶ NUMSYNTH can outperform existing ap-
proaches when learning programs with
numerical values.

5 - Experiment 2

Q3 How well does NUMSYNTH scale with the
number of examples?

NUMSYNTH ALEPH MAGICPOPPER

0 100 200 300 400 5000

100

200

300

400

500

600

Number of examples

Le
ar

ni
ng

tim
e

(s
)

Fig. 2: Learning time
versus the number of ex-
amples for zendo1.
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Fig. 3: Learning time
versus the number of ex-
amples for pharma2.

▶ NUMSYNTH can scale well, better than
ALEPH and MAGICPOPPER with respect to
the number of examples

▶ Numerical search stage can be expensive
and limit scalability

6 - Conclusion

▶ Efficiently learning programs with numer-
ical values from infinite domains and rea-
son about multiple examples.

▶ NUMSYNTH can outperform existing ap-
proaches.

Future work and Limitations:
▶ scalability with respect to the complexity of

the numerical reasoning stage
▶ learn numerical values from noisy examples
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