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cell(b1,0,x).
cell(b1,1,x).
cell(b1,2,x).

cell(b2,0,x).

cell(b3,0,0).
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Program

win(Board,Player) <« cell(Board,0,Player), cell(Board,1,Player), cell(Board,?2,Player)
win(Board,Player) < cell(Board,2,Player), cell(Board,5,Player), cell(Board,8,Player)
win(Board,Player) < cell(Board,0,Player), cell(Board,4,Player), cell(Board,8,Player)
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Challenges

unspecified level of noise €
- overfitting

- learn complex programs (recursion and predicate invention)



Our approach: based on learning from failures
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Existing approaches

find a program which covers all positive examples, no
negative examples and has minimal size
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mdl(h) = size(h) + fp(h) + fn(h)
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minimum description length: trade-off model complexity
(program size) and data fit (training accuracy)

mdl(h) = Asize(h) + Bfp(h) + Cfn(h)
with A>0,B>0and C >0
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We use a MaxSAT solver to search for a MDL
combination (a union) of programs.

combine stage




Implementation

We implement our approach in MaxSynth.



Implementation

We implement our approach in MaxSynth.

Theorem: MaxSynth learns an optimal solution (a MDL program) if one exists.



Does it work?

Q1 Can MAXSYNTH learn programs from noisy data?
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Does it work?

Q2 How well does MAXSYNTH handle progressively more
noise?
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Conclusion

An approach that learns minimal description length
programs from noisy examples.

Our approach can:
- improve learning performance,
- scale to moderate amount of noise.



Limitation
- Cost function

mdl(h) = Asize(h) + Bfp(h) + Cfn(h)
with A >0,B>0and C >0



Thank you!
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