Learning MDL logic programs from noisy data

Céline Hocquette, Andreas Niskanen, Matti Järvisalo, Andrew Cropper

University of Oxford, University of Helsinki

Examples (positive or negative)

Examples (positive or negative)

Background Knowledge

Negative

Positive examples	Negative examples
win(b1,x). win(b2,o). win(b3,o).	win(b4,x).

Positive

Negative

Positive examples	Negative examples
win(b1,x). win(b2,o). win(b3,o).	win(b4,x).

Background Knowledge
<pre>cell(b1,0,x). cell(b1,1,x). cell(b1,2,x).</pre>
 cell(b2,0,x).
cell(b3,0,o).

0	1	2
3	4	5
6	7	8

Positive \times \times \wedge \circ <td

Negative

Positive

Program
<pre>win(Board,Player)</pre>
win(Board,Player) ← cell(Board,2,Player), cell(Board,5,Player), cell(Board,8,Player)
<pre>win(Board,Player)</pre>

0	1	2
3	4	5
6	7	8

In this work

An approach to learn programs from noisy (mislabelled) examples

An approach to learn programs from noisy (mislabelled) examples

- unspecified level of noise ε

- unspecified level of noise ϵ
- overfitting

- unspecified level of noise &
- overfitting
- learn complex programs (recursion and predicate invention)

Our approach: based on learning from failures

Existing approaches

Existing approaches

find a program which covers all positive examples, no negative examples and has minimal size

minimum description length: trade-off model complexity (program size) and data fit (training accuracy)

minimum description length: trade-off model complexity (program size) and data fit (training accuracy)

$$mdl(h) = size(h) + fp(h) + fn(h)$$

minimum description length: trade-off model complexity (program size) and data fit (training accuracy)

$$mdl(h) = Asize(h) + Bfp(h) + Cfn(h)$$

with $A > 0, B \ge 0$ and $C \ge 0$

Our approach

Our approach

We use a MaxSAT solver to search for a MDL combination (a union) of programs.

Implementation

We implement our approach in MaxSynth.

We implement our approach in MaxSynth.

Theorem: MaxSynth learns an optimal solution (a MDL program) if one exists.

Q1 Can MAXSYNTH learn programs from noisy data?

Does it work?

Q2 How well does MAXSYNTH handle progressively more noise?

An approach that learns **minimal description length** programs from **noisy** examples.

Our approach can:

- improve learning performance,
- scale to moderate amount of noise.

Limitation

- Cost function

$$mdl(h) = Asize(h) + Bfp(h) + Cfn(h)$$

with $A > 0, B \ge 0$ and $C \ge 0$

Thank you!

Questions?