Learning programs with magic values

<u>Céline Hocquette</u>, Andrew Cropper University of Oxford

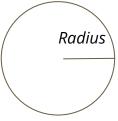
A *magic value* is a constant symbol in a program which has no clear explanation for its choice: it *magically* works.

Positive examples	Negative examples
[a,e,6,7,q,2]	[6,e,a,2,q,6,e]
[p,3,9,y,5,r,a,q,7]	[u,k,a,b,c,z,r,t,5,e,t]

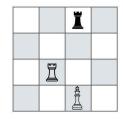
 $f(A) \leftarrow head(A, \mathbf{7})$ $f(A) \leftarrow tail(A, B), f(B)$

Motivation

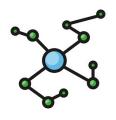
area(Radius,Area) ← square(Radius,SqRadius), mult(SqRadius, **3.14**, Area).



rookprotected(State) ← piece(State1,Piece1,**white,rook**), piece(State,Piece2,**white,king**), distance(Piece1,Piece2,**1**).



drug(Drug) ← atom(Drug,Atom1), atom(Drug,Atom2), atomtype(Atom1,**oxygen**), atomtype(Atom2,**hydrogen**), distance(Atom1,Atom2,**0.53**)



Bottom clause (Progol, Aleph):

- bottom clause can grow large

- limited recursion and lack of predicate invention

Precompute every possible rule in the hypothesis space (ASPAL, ILASP, HEXMIL, ProSynth)

H1: $f(A) \leftarrow head(A, 1)$ H2: $f(A) \leftarrow head(A, 2)$ H3: $f(A) \leftarrow head(A, 3)$ H4: $f(A) \leftarrow head(A, 4)$ H5: $f(A) \leftarrow head(A, 5)$ H6: $f(A) \leftarrow head(A, 6)$

Existing approaches

Unary predicate symbols, one for each constant symbol (Popper, δ ILP)

 $H1: f(A) \leftarrow head(A,B), c1(B)$

H2: $f(A) \leftarrow head(A,B), c2(B)$

H3: $f(A) \leftarrow head(A,B)$, c3(B)

H4: $f(A) \leftarrow head(A,B), c4(B)$

H5: $f(A) \leftarrow head(A,B)$, c5(B)

H6: $f(A) \leftarrow head(A,B), c6(B)$

...

Existing approaches: limitations

Enumeration of constant symbols

- cannot scale to large or infinite domains

- suffer from performance issue

Our approach

Existing approaches		Our approach
$f(List) \leftarrow head(List, 1).$	$f(List) \leftarrow head(List, E), c1(E).$	
$f(List) \leftarrow head(List, 2).$	$f(List) \leftarrow head(List, E), c2(E).$	
$f(List) \leftarrow head(List, 3).$	$f(List) \leftarrow head(List, E), c3(E).$	$f(A) \leftarrow head(List, E),$
$f(List) \leftarrow head(List, 4).$	$f(List) \leftarrow head(List, E), c4(E).$	@magic(E).
$f(List) \leftarrow head(List, 5).$	$f(List) \leftarrow head(List, E), c5(E).$	
$f(List) \leftarrow head(List, 6).$	$f(List) \leftarrow head(List,E), c6(E).$	

Related Work

Our approach is inspired by Aleph's lazy evaluation procedure:

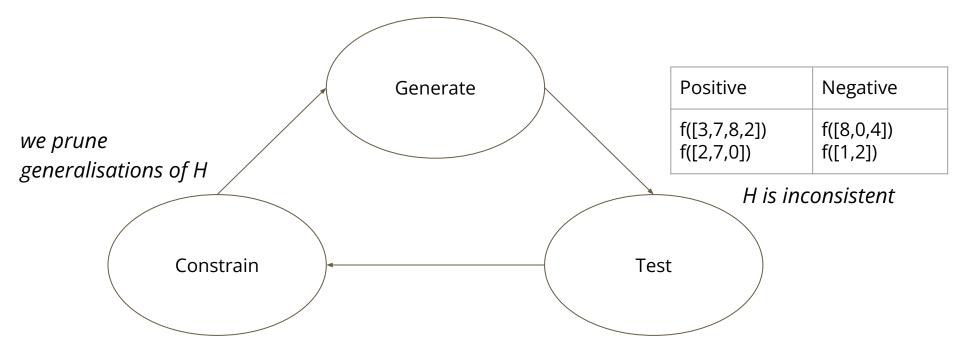
- can learn constants from reasoning from multiple examples

- limited learning of recursion and lack of predicate invention

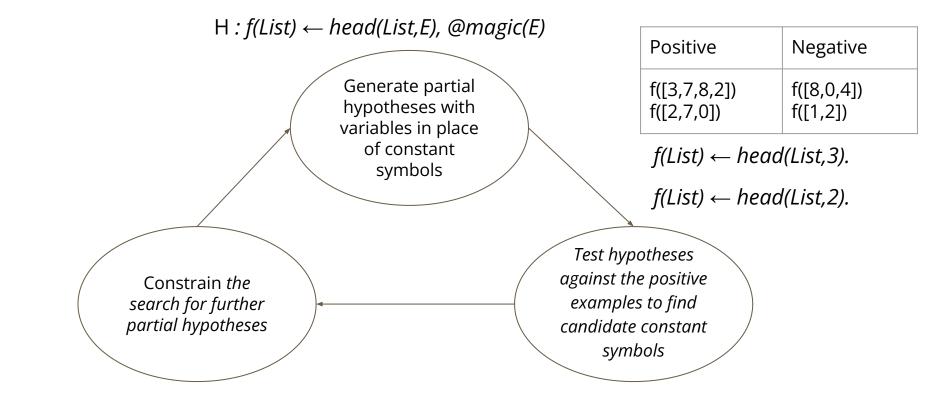
- requires strong user bias

Learning From Failures

 $H: f(List) \leftarrow head(List, E), c1(E).$



Our approach



Implementation

We implement our approach in MagicPopper

Based on the LFF learner Popper

Q1: How well does MagicPopper perform compared to other approaches?

Q1: comparison with other approaches

Task	ask Aleph		Popper	r MagicPopper	
md	100 ± 0	50 ± 0	100 ± 0	100 ± 0	
buttons-next	81 ± 0	50 ± 0	100 ± 0	100 ± 0	
coins-next	50 ± 0	50 ± 0	100 ± 0	100 ± 0	
buttons- $goal$	100 ± 0	50 ± 0	98 ± 1	100 ± 0	
coins- $goal$	50 ± 0	50 ± 0	100 ± 0	100 ± 0	
gt-centipede-goal	99 ± 0	50 ± 0	75 ± 0	75 ± 0	
gt-centipede-legal	100 ± 0	50 ± 0	100 ± 0	100 ± 0	
gt-centipede-next	100 ± 0	50 ± 0	100 ± 0	100 ± 0	
krk	100 ± 0	54 ± 4	96 ± 1	99 ± 0	
list	50 ± 0	100 ± 0	49 ± 0	100 ± 0	
powerof 2	86 ± 1	58 ± 5	84 ± 1	100 ± 0	
append	95 ± 1	99 ± 0	96 ± 1	96 ± 1	

Predictive accuracies

Q1: comparison with other approaches

Task	Aleph	Metagol	Popper	MagicPopper
md	0 ± 0		1 ± 0	0 ± 0
buttons-next	32 ± 1		3 ± 0	4 ± 0
coins-next			53 ± 0	99 ± 1
buttons- $goal$	0 ± 0		1 ± 0	0 ± 0
coins- $goal$			0 ± 0	0 ± 0
$gt\-centipede\-goal$	0 ± 0		23 ± 0	6 ± 0
gt-centipede-legal	0 ± 0		4 ± 0	1 ± 0
gt-centipede-next	0 ± 0		10 ± 0	0 ± 0
krk	0 ± 0		35 ± 6	6 ± 0
list		36 ± 8		2 ± 0
powerof 2	0 ± 0		18 ± 0	0 ± 0
append	1 ± 0	0 ± 0	$298~\pm~49$	0 ± 0

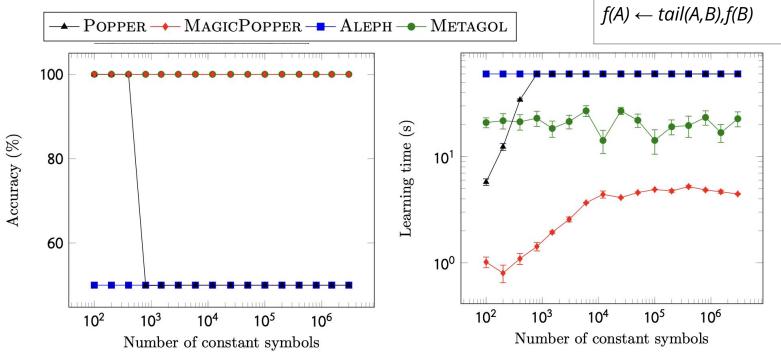
Learning times

Q1: comparison with other approaches

MagicPopper can outperform existing approaches in terms of learning times and predictive accuracies

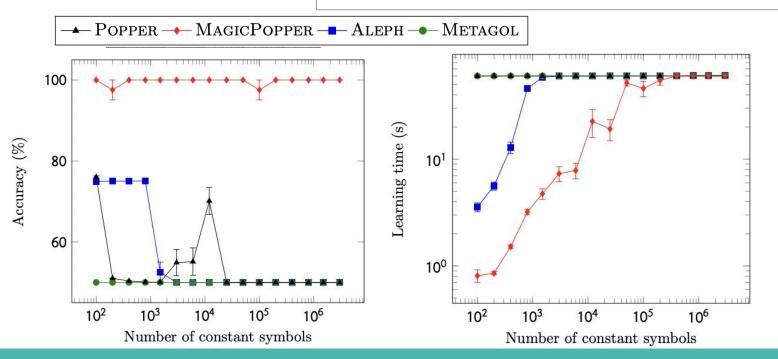
Q2: How well does MagicPopper scale with the number of constant symbols?

Q2: scalability with respect to the number of constant symbols $f(A) \leftarrow head(A, 7)$



Q2: scalability with respect to the number of constant symbols *next_val(A,5)* ← *does(A,player,press_button)*

 $next_val(A,B) \leftarrow does(A, player, noop), true_val(A,C), succ(B,C)$



Q2: scalability with respect to the number of constant symbols

MagicPopper can scale well with the number of constant symbols, up to millions

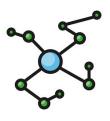
Q3: Can MagicPopper learn in infinite domains?

Q3: learning in infinite domains

Task	Aleph	Metagol	Popper	MagicPopper
pi	100 ± 0	50 ± 0	50 ± 0	99 ± 0
equilibrium	100 ± 0	50 ± 0	62 ± 1	86 ± 7
drug design	63 ± 7	50 ± 0	50 ± 0	98 ± 0
next	50 ± 0	50 ± 0	49 ± 0	100 ± 0
sumk	50 ± 0	50 ± 0	50 ± 0	100 ± 0

Predictive accuracies

drug(Drug) ← atom(Drug,Atom1), atom(Drug,Atom2), atomtype(Atom1,**oxygen**), atomtype(Atom2,**hydrogen**), distance(Atom1,Atom2,**0.53**)

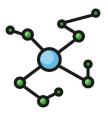


Q3: learning in infinite domains

Task	Aleph	Metagol	Popper	MagicPopper
pi equilibrium drug design	$\begin{array}{c} 4 \pm 1 \\ 0 \pm 0 \end{array}$			1 ± 0 72 \pm 17 6 \pm 3
$next \\ sumk$				25 ± 0 99 ± 1
3 01110				55 I I

Learning times

drug(Drug) ← atom(Drug,Atom1), atom(Drug,Atom2), atomtype(Atom1,**oxygen**), atomtype(Atom2,**hydrogen**), distance(Atom1,Atom2,**0.53**)



Q3: learning in infinite domains

> MagicPopper can learn in infinite domains

Conclusion

MagicPopper, approach to learn programs with magic values. It can:

- outperform state-of-the art approaches,
- scale to domains with millions of constant symbols,
- learn in continuous domains,
- learn optimal programs and recursive programs.

Future Work and Limitations

• Noise: identify magic values from noisy examples

• Numerical reasoning from multiple examples (eg identify thresholds)

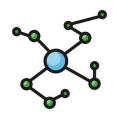
References

- Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set programming. In: Inductive Logic Programming 21st International Conference, (2011).
- Law, M., Russo, A., Broda, K.: The ILASP system for learning Answer Set Programs. www.ilasp.com (2015).
- Kaminski, T., Eiter, T., Inoue, K.: Exploiting answer set programming with external sources for meta-interpretive learning. Theory and Practice of Logic Programming 18(3-4), (2018).
- Raghothaman, M., Mendelson, J., Zhao, D., Naik, M., Scholz, B.: Provenance-guided synthesis of datalog programs. Proceedings of the ACM on Programming Languages 4(POPL), (2019).
- Cropper, A., Morel, R.: Learning programs by learning from failures. Machine Learning 110(4), 801–856 (2021).
- Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. Journal of Artificial Intelligence Research 61, (2018).
- Srinivasan, A.: The ALEPH manual. Machine Learning at the Computing Laboratory (2001).
- Srinivasan, A., Camacho, R.: Numerical reasoning with an ILP system capable of lazy evaluation and customised search. The Journal of Logic Programming 40(2), 185–213 (1999).
- Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta- interpretive learning: application to grammatical inference. Machine Learning 94, (2014).

equilibrium(Object) ← forces(Object,Forces), sum(Forces,Sum), mass(Object,Mass), mult(Mass, **9.81**, Sum).

$$\begin{split} \mathsf{next}(\mathsf{A},\mathbf{q}) &\leftarrow \mathsf{my} \, \mathsf{true}(\mathsf{A},\mathbf{q}), \mathsf{does}(\mathsf{A},\mathbf{robot},\mathbf{a}) \\ \mathsf{next}(\mathsf{A},\mathbf{p}) &\leftarrow \mathsf{my} \, \mathsf{true}(\mathsf{A},\mathbf{q}), \mathsf{does}(\mathsf{A},\mathbf{robot},\mathbf{b}) \\ \mathsf{next}(\mathsf{A},\mathbf{q}) &\leftarrow \mathsf{my} \, \mathsf{true}(\mathsf{A},\mathbf{r}), \mathsf{does}(\mathsf{A},\mathbf{robot},\mathbf{c}) \\ \mathsf{next}(\mathsf{A},\mathbf{r}) &\leftarrow \mathsf{my} \, \mathsf{true}(\mathsf{A},\mathbf{r}), \mathsf{does}(\mathsf{A},\mathbf{robot},\mathbf{a}) \\ \mathsf{next}(\mathsf{A},\mathbf{r}) &\leftarrow \mathsf{my} \, \mathsf{true}(\mathsf{A},\mathbf{r}), \mathsf{does}(\mathsf{A},\mathbf{robot},\mathbf{b}) \\ \mathsf{next}(\mathsf{A},\mathbf{q}) &\leftarrow \mathsf{my} \, \mathsf{true}(\mathsf{A},\mathbf{p}), \mathsf{does}(\mathsf{A},\mathbf{robot},\mathbf{b}) \\ \mathsf{next}(\mathsf{A},\mathbf{p}) &\leftarrow \mathsf{my} \, \mathsf{true}(\mathsf{A},\mathbf{p}), \mathsf{does}(\mathsf{A},\mathbf{robot},\mathbf{c}) \\ \mathsf{next}(\mathsf{A},\mathsf{B}) &\leftarrow \mathsf{my} \, \mathsf{true}(\mathsf{A},\mathsf{C}), \mathsf{my} \, \mathsf{succ}(\mathsf{C},\mathsf{B}) \\ \mathsf{next}(\mathsf{A},\mathsf{p}) &\leftarrow \mathsf{not} \, \mathsf{my} \, \mathsf{true}(\mathsf{A},\mathsf{B}), \mathsf{does}(\mathsf{A},\mathbf{robot},\mathbf{a}) \end{split}$$

drug(Drug) ← atom(Drug,Atom1), atom(Drug,Atom2), atomtype(Atom1,**oxygen**), atomtype(Atom2,**hydrogen**), distance(Atom1,Atom2,**0.53**)



 $next(A,B) \leftarrow head(A, 4.543), tail(A,C), head(C,B).$ $next(A,B) \leftarrow tail(A,C), next(C,B).$

 $sumk(A) \leftarrow member(A,B), member(A,C), add(B,C,612)$

Implementation: Bias

Predicate	Туре
head_pred(f,1)	(state)
body_pred(cell,4)	(state,pos,color,type)
body_pred(distance,3)	(pos,pos,int)

Setting	Bias	Example
Arguments	cell 3 distance 3	f(State) ← cell(State,Piece1, Color1 ,Type),cell(State,Piece2, Color2 ,Type),distance(Piece1,Piece2, Dist)
Types	integer type	f(State) ← cell(State,Piece1,Color, Type1),cell(State,Piece2,Color, Type2),distance(Piece1,Piece2, Dist)
All		f(State) ← cell(State,Piece1,Color1,Type1),cell(State,Piece2,Color2,Type2),distance(Piece1,Piece2,Dist)