
Learning programs with magic
values

Céline Hocquette, Andrew Cropper
University of Oxford

Motivation

f(A) ← head(A,7)

f(A) ← tail(A,B),f(B)

Positive examples Negative examples

[a,e,6,7,q,2]

[p,3,9,y,5,r,a,q,7]

[6,e,a,2,q,6,e]

[u,k,a,b,c,z,r,t,5,e,t]

A magic value is a constant symbol in a program which has no clear
explanation for its choice: it magically works.

Motivation

area(Radius,Area) ←
 square(Radius,SqRadius),
 mult(SqRadius, 3.14, Area).

rookprotected(State) ←
 piece(State1,Piece1,white,rook),
 piece(State,Piece2,white,king),
 distance(Piece1,Piece2,1).

Radius

drug(Drug) ←
 atom(Drug,Atom1),
 atom(Drug,Atom2),
 atomtype(Atom1,oxygen),
 atomtype(Atom2,hydrogen),
 distance(Atom1,Atom2,0.53)

Existing approaches
Bottom clause (Progol, Aleph):

- bottom clause can grow large

- limited recursion and lack of predicate invention

Existing approaches
Precompute every possible rule in the hypothesis space (ASPAL, ILASP,
HEXMIL, ProSynth)

H1: f(A) ← head(A,1)

H2: f(A) ← head(A,2)

H3: f(A) ← head(A,3)

H4: f(A) ← head(A,4)

H5: f(A) ← head(A,5)

H6: f(A) ← head(A,6)

…

Existing approaches
Unary predicate symbols, one for each constant symbol (Popper, δILP)

H1: f(A) ← head(A,B), c1(B)

H2: f(A) ← head(A,B), c2(B)

H3: f(A) ← head(A,B), c3(B)

H4: f(A) ← head(A,B), c4(B)

H5: f(A) ← head(A,B), c5(B)

H6: f(A) ← head(A,B), c6(B)

…

Existing approaches: limitations

Enumeration of constant symbols

- cannot scale to large or infinite domains

- suffer from performance issue

Our approach
Existing approaches Our approach

f(List) ← head(List,1).

f(List) ← head(List,2).

f(List) ← head(List,3).

f(List) ← head(List,4).

f(List) ← head(List,5).

f(List) ← head(List,6).

..

f(List) ← head(List,E), c1(E).

f(List) ← head(List,E), c2(E).

f(List) ← head(List,E), c3(E).

f(List) ← head(List,E), c4(E).

f(List) ← head(List,E), c5(E).

f(List) ← head(List,E), c6(E).

…

f(A) ← head(List,E),
@magic(E).

Related Work
Our approach is inspired by Aleph’s lazy evaluation procedure:

- can learn constants from reasoning from multiple examples

- limited learning of recursion and lack of predicate invention

- requires strong user bias

Learning From Failures

Generate

Constrain Test

H : f(List) ← head(List,E), c1(E).

H is inconsistent

we prune
generalisations of H

Positive Negative

f([3,7,8,2])
f([2,7,0])

f([8,0,4])
f([1,2])

Our approach

Generate partial
hypotheses with
variables in place

of constant
symbols

Constrain the
search for further
partial hypotheses

Test hypotheses
against the positive

examples to find
candidate constant

symbols

H : f(List) ← head(List,E), @magic(E)

f(List) ← head(List,3).

f(List) ← head(List,2).

Positive Negative

f([3,7,8,2])
f([2,7,0])

f([8,0,4])
f([1,2])

Implementation

We implement our approach in MagicPopper

Based on the LFF learner Popper

Experiments

Q1: How well does MagicPopper perform compared to other
approaches?

Q1: comparison with other approaches

Predictive accuracies

Q1: comparison with other approaches

Learning times

Q1: comparison with other approaches

➢ MagicPopper can outperform existing approaches in terms
of learning times and predictive accuracies

Experiments

Q2: How well does MagicPopper scale with the number of
constant symbols?

Q2: scalability with respect to the number of constant
symbols f(A) ← head(A,7)

f(A) ← tail(A,B),f(B)

Q2: scalability with respect to the number of constant
symbols next_val(A,5) ← does(A,player,press_button)

next_val(A,B) ← does(A,player,noop), true_val(A,C), succ(B,C)

Q2: scalability with respect to the number of constant
symbols

➢ MagicPopper can scale well with the number of constant
symbols, up to millions

Experiments

Q3: Can MagicPopper learn in infinite domains?

Q3: learning in infinite domains

Predictive accuracies

drug(Drug) ←
 atom(Drug,Atom1),
 atom(Drug,Atom2),
 atomtype(Atom1,oxygen),
 atomtype(Atom2,hydrogen),
 distance(Atom1,Atom2,0.53)

Q3: learning in infinite domains

Learning times

drug(Drug) ←
 atom(Drug,Atom1),
 atom(Drug,Atom2),
 atomtype(Atom1,oxygen),
 atomtype(Atom2,hydrogen),
 distance(Atom1,Atom2,0.53)

Q3: learning in infinite domains

➢ MagicPopper can learn in infinite domains

Conclusion
MagicPopper, approach to learn programs with magic values. It can:

- outperform state-of-the art approaches,

- scale to domains with millions of constant symbols,

- learn in continuous domains,

- learn optimal programs and recursive programs.

Future Work and Limitations

● Noise: identify magic values from noisy examples

● Numerical reasoning from multiple examples (eg identify thresholds)

References
■ Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set programming. In: Inductive Logic Programming - 21st

International Conference, (2011).

■ Law, M., Russo, A., Broda, K.: The ILASP system for learning Answer Set Programs. www.ilasp.com (2015).

■ Kaminski, T., Eiter, T., Inoue, K.: Exploiting answer set programming with external sources for meta-interpretive learning.
Theory and Practice of Logic Programming 18(3-4), (2018).

■ Raghothaman, M., Mendelson, J., Zhao, D., Naik, M., Scholz, B.: Provenance-guided synthesis of datalog programs. Proceedings
of the ACM on Programming Languages 4(POPL), (2019).

■ Cropper, A., Morel, R.: Learning programs by learning from failures. Machine Learning 110(4), 801–856 (2021).

■ Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. Journal of Artificial Intelligence Research 61, (2018).

■ Srinivasan, A.: The ALEPH manual. Machine Learning at the Computing Laboratory (2001).

■ Srinivasan, A., Camacho, R.: Numerical reasoning with an ILP system capable of lazy evaluation and customised search. The
Journal of Logic Programming 40(2), 185–213 (1999).

■ Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta- interpretive learning: application to grammatical inference.
Machine Learning 94, (2014).

Tasks
drug(Drug) ←
 atom(Drug,Atom1),
 atom(Drug,Atom2),
 atomtype(Atom1,oxygen),
 atomtype(Atom2,hydrogen),
 distance(Atom1,Atom2,0.53)

equilibrium(Object) ←
 forces(Object,Forces),
 sum(Forces,Sum), mass(Object,Mass),
 mult(Mass, 9.81, Sum).

next(A,B) ← head(A,4.543), tail(A,C), head(C,B).
next(A,B) ← tail(A,C),next(C,B).

next(A,q) ← my true(A,q),does(A,robot,a)
next(A,p) ← my true(A,q),does(A,robot,b)
next(A,q) ← my true(A,r),does(A,robot,c)
next(A,r) ← my true(A,r),does(A,robot,a)
next(A,r) ← my true(A,r),does(A,robot,b)
next(A,q) ← my true(A,p),does(A,robot,b)
next(A,p) ← my true(A,p),does(A,robot,c)
next(A,B) ← my true(A,C),my succ(C,B)
next(A,p) ← not my true(A,B),does(A,robot,a)

sumk(A) ← member(A,B), member(A,C), add(B,C,612)

Implementation: Bias

Setting Bias Example

Arguments cell 3
distance 3

f(State) ← cell(State,Piece1,Color1,Type),cell(State,Piece2,Color2,Type),distance(Piece1,Piece2,Dist)

Types integer
type

f(State) ← cell(State,Piece1,Color,Type1),cell(State,Piece2,Color,Type2),distance(Piece1,Piece2,Dist)

All f(State) ← cell(State,Piece1,Color1,Type1),cell(State,Piece2,Color2,Type2),distance(Piece1,Piece2,Dist)

Predicate Type

head_pred(f,1) (state)

body_pred(cell,4) (state,pos,color,type)

body_pred(distance,3) (pos,pos,int)

