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Motivation

f(A) ← head(A,7)

f(A) ← tail(A,B),f(B)

Positive examples Negative examples

[a,e,6,7,q,2]

[p,3,9,y,5,r,a,q,7]

[6,e,a,2,q,6,e]

[u,k,a,b,c,z,r,t,5,e,t]

A magic value is a constant symbol in a program which has no clear 
explanation for its choice: it magically works. 



Motivation

area(Radius,Area) ← 
        square(Radius,SqRadius), 
        mult(SqRadius, 3.14, Area).

rookprotected(State) ← 
        piece(State1,Piece1,white,rook),
        piece(State,Piece2,white,king),
        distance(Piece1,Piece2,1).

Radius

drug(Drug) ← 
        atom(Drug,Atom1),
        atom(Drug,Atom2),
        atomtype(Atom1,oxygen),
        atomtype(Atom2,hydrogen),
        distance(Atom1,Atom2,0.53)



Existing approaches
Bottom clause (Progol, Aleph):

- bottom clause can grow large

- limited recursion and lack of predicate invention



Existing approaches
Precompute every possible rule in the hypothesis space (ASPAL, ILASP, 
HEXMIL, ProSynth)

H1: f(A) ← head(A,1)

H2: f(A) ← head(A,2) 

H3: f(A) ← head(A,3)

H4: f(A) ← head(A,4)

H5: f(A) ← head(A,5)

H6: f(A) ← head(A,6)

…



Existing approaches
Unary predicate symbols, one for each constant symbol (Popper, δILP)

H1: f(A) ← head(A,B), c1(B) 

H2: f(A) ← head(A,B), c2(B) 

H3: f(A) ← head(A,B), c3(B) 

H4: f(A) ← head(A,B), c4(B) 

H5: f(A) ← head(A,B), c5(B) 

H6: f(A) ← head(A,B), c6(B)

…



Existing approaches: limitations

Enumeration of constant symbols

- cannot scale to large or infinite domains

- suffer from performance issue



Our approach
Existing approaches Our approach

f(List) ← head(List,1).     

f(List) ← head(List,2).

f(List) ← head(List,3).

f(List) ← head(List,4).

f(List) ← head(List,5).

f(List) ← head(List,6).

..

f(List) ← head(List,E), c1(E).     

f(List) ← head(List,E), c2(E).

f(List) ← head(List,E), c3(E).

f(List) ← head(List,E), c4(E).

f(List) ← head(List,E), c5(E).

f(List) ← head(List,E), c6(E).

…

f(A) ← head(List,E), 
@magic(E).



Related Work
Our approach is inspired by Aleph’s lazy evaluation procedure:

- can learn constants from reasoning from multiple examples

- limited learning of recursion and lack of predicate invention

- requires strong user bias



Learning From Failures

Generate

Constrain Test

H : f(List) ← head(List,E), c1(E).    

H is inconsistent

we prune 
generalisations of H

Positive Negative

f([3,7,8,2])
f([2,7,0])

f([8,0,4])
f([1,2])



Our approach

Generate partial 
hypotheses with 
variables in place 

of constant 
symbols

Constrain the 
search for further 
partial hypotheses

Test hypotheses 
against the positive 

examples to find 
candidate constant 

symbols

H : f(List) ← head(List,E), @magic(E)

f(List) ← head(List,3).

f(List) ← head(List,2).

Positive Negative

f([3,7,8,2])
f([2,7,0])

f([8,0,4])
f([1,2])



Implementation

We implement our approach in MagicPopper

Based on the LFF learner Popper



Experiments

Q1: How well does MagicPopper perform compared to other 
approaches?



Q1: comparison with other approaches

Predictive accuracies



Q1: comparison with other approaches

Learning times



Q1: comparison with other approaches

➢ MagicPopper can outperform existing approaches in terms 
of learning times and predictive accuracies



Experiments

Q2: How well does MagicPopper scale with the number of 
constant symbols?



Q2: scalability with respect to the number of constant 
symbols f(A) ← head(A,7)

f(A) ← tail(A,B),f(B)



Q2: scalability with respect to the number of constant 
symbols next_val(A,5) ← does(A,player,press_button)

next_val(A,B) ← does(A,player,noop), true_val(A,C), succ(B,C)



Q2: scalability with respect to the number of constant 
symbols

➢ MagicPopper can scale well with the number of constant 
symbols, up to millions



Experiments

Q3: Can MagicPopper learn in infinite domains?



Q3: learning in infinite domains

Predictive accuracies

drug(Drug) ← 
        atom(Drug,Atom1),
        atom(Drug,Atom2),
        atomtype(Atom1,oxygen),
        atomtype(Atom2,hydrogen),
        distance(Atom1,Atom2,0.53)



Q3: learning in infinite domains

Learning times

drug(Drug) ← 
        atom(Drug,Atom1),
        atom(Drug,Atom2),
        atomtype(Atom1,oxygen),
        atomtype(Atom2,hydrogen),
        distance(Atom1,Atom2,0.53)



Q3: learning in infinite domains

➢ MagicPopper can learn in infinite domains



Conclusion
MagicPopper, approach to learn programs with magic values. It can:

- outperform state-of-the art approaches,

- scale to domains with millions of constant symbols,

- learn in continuous domains,

- learn optimal programs and recursive programs.



Future Work and Limitations

● Noise: identify magic values from noisy examples

● Numerical reasoning from multiple examples (eg identify thresholds)
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Tasks
drug(Drug) ← 
        atom(Drug,Atom1),
        atom(Drug,Atom2),
        atomtype(Atom1,oxygen),
        atomtype(Atom2,hydrogen),
        distance(Atom1,Atom2,0.53)

equilibrium(Object) ← 
        forces(Object,Forces),
        sum(Forces,Sum), mass(Object,Mass), 
        mult(Mass, 9.81, Sum).

next(A,B) ← head(A,4.543), tail(A,C), head(C,B).
next(A,B) ← tail(A,C),next(C,B).

next(A,q) ← my true(A,q),does(A,robot,a)
next(A,p) ← my true(A,q),does(A,robot,b)
next(A,q) ← my true(A,r),does(A,robot,c)
next(A,r) ← my true(A,r),does(A,robot,a)
next(A,r) ← my true(A,r),does(A,robot,b)
next(A,q) ← my true(A,p),does(A,robot,b)
next(A,p) ← my true(A,p),does(A,robot,c)
next(A,B) ← my true(A,C),my succ(C,B)
next(A,p) ← not my true(A,B),does(A,robot,a)

sumk(A) ← member(A,B), member(A,C), add(B,C,612)



Implementation: Bias

Setting Bias Example

Arguments cell 3
distance 3

f(State) ← cell(State,Piece1,Color1,Type),cell(State,Piece2,Color2,Type),distance(Piece1,Piece2,Dist)

Types integer
type

f(State) ← cell(State,Piece1,Color,Type1),cell(State,Piece2,Color,Type2),distance(Piece1,Piece2,Dist)

All f(State) ← cell(State,Piece1,Color1,Type1),cell(State,Piece2,Color2,Type2),distance(Piece1,Piece2,Dist)

Predicate Type

head_pred(f,1) (state)

body_pred(cell,4) (state,pos,color,type)

body_pred(distance,3) (pos,pos,int)


