Learning programs with magic values

Céline Hocquette and Andrew Cropper

Departement of Computer Science University of Oxford celine.hocquette@cs.ox.ac.uk

1 - Introduction

2 - Learning framework

A magic value is a constant symbol in a program which has no clear explanation for its choice: it 'magically' works.

UK Research

and Innovation

f(List)←head(List,7) f(List)←tail(List,Tail),f(Tail)

nextval(5) ← does(**player**, **press**) nextval(V) ← does(player, noop), true_val(T), succ(V,T)

Key idea: do not enumerate every possible constant symbols, but instead use *magic variables* which represent the possible constant symbols. Inspired by ALEPH's lazy evaluation procedure [5].

> **Generate** partial hypotheses with magic variables in place of constant symbols

f(Board) ← piece(Board,Piece1,Color1,Type1),@magic(Type1), piece(Board, Piece2, Color2, Type2), @magic(Type2), distance(Piece1, Piece2, Int), @magic(Int) @magic(Color1),@magic(Color2)

drug(D) \leftarrow atom(D,A1),atom(D,A2), atomtype(A1, o), atomtype(A2, h), distance(A1,A2,**0.53**)

Fig. 1: Example of programs with magic values.

Existing program synthesis approaches rely on enumeration of candidate magic values and thus cannot scale to large or infinite domains.

We introduce an approach, implemented in MAGICPOPPER, which can:

- 1. learn programs with magic values,
- 2. improve learning performance,
- 3. scale to large, even infinite, domains.

Existing approaches	MagicPopper
$f(L) \leftarrow head(L,H), C_1(H)$	
$f(L) \leftarrow head(L,H), C_2(H)$	$f(L) \leftarrow head(L,H),$
$f(L) \leftarrow head(L,H), C_3(H)$	@magic(H)

Constrain the search for further partial hypotheses

Test the hypothesis over the examples to find candidate values for the magic variables

Fig. 3: Our learning framework follows a generate, test and constrain loop (Learning From Failures [2] setting of ILP [1]).

f(Board) ← piece(Board, Piece1, white, rook), piece(Board, Piece2, white, king), distance(Piece1, Piece2, 1)

f(Board) ← piece(Board, Piece1, white, king), piece(Board, Piece2, black, king), distance(Piece1, Piece2, 3)

4 - Experiment 2	5 - Exp	berime	ent 3	
Q2 How well does MAGICPOPPER scale?	Q3 Can mains'	MAGICP ?	OPPER lea	arn in infinite do-
	рі	100	50	99
	physics	100	62	86
	drug	63	50	98
	next	50	49	100
	sumk	50	50	100
Solution <td colspan="3">Table 3: Predictive accuracies¹.</td> <td>curacies¹.</td>	Table 3: Predictive accuracies ¹ .			curacies ¹ .
Fig. 4: List: learning Fig. 5: List: predictive ac-	Task	ALEPH	POPPER	MAGICPOPPER
times. curacies.	pi	4	timeout	1
	physics	0	209	72
	drua	5	1	6
	next	0	1	25

. . .

Fig. 2: Existing approaches enumerate possible constant symbols while our approach does not.

3 - Experiment 1

Q1 How well does MAGICPOPPER perform compared to other approaches?

Task	ALEPH	POPPER	MAGICPOPPER
md	100	100	100
buttons	81	100	100
coins	50	100	100
buttons-g	100	98	100
coins-g	50	100	100
krk	100	96	99
list	50	49	100
powerof2	83	100	100
append	95	96	96

Table 1: Predictive accuracies¹

Table 4: Learning times¹.

99

MAGICPOPPER can learn programs with magic values from infinite domains.

References

sumk

[1] A. Cropper and A. Dumančić. Inductive logic programming at 30: A new introduction. J. Artif. Intell. Res.,

Task	ALEPH	POPPER	MAGICPOPPER
md	0	1	0
buttons	32	3	4
coins	timeout	53	99
buttons-g	0	1	0
coins-g	0	0	0
krk	0	35	6
list	66	timeout	2
powerof2	0	182	0
append	1	298	0

Table 2: Learning times¹.

MAGICPOPPER can outperform existing approaches.

6 - Conclusion

times.

lions.

Learning programs with magic values from large, potentially infinite domains.

curacies.

MAGICPOPPER can scale well with the

number of constant symbols, up to mil-

- MAGICPOPPER can outperform existing approaches.
- Future work and Limitations:
- numerical reasoning from multiple examples (eg learning thresholds)
- learning from noisy examples

¹Results are statistically significant.

2022.

- [2] A. Cropper and R. Morel. Learning programs by learning from failures. Mach. Learn., 2021.
- [3] S. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Metainterpretive learning of higher-order dyadic datalog: Predicate invention revisited. Mach. Learn., 2015.
- [4] A. Srinivasan. The ALEPH manual. *Mach. Learn. at the* Computing Laboratory, 2001.
- [5] A. Srinivasan and R. Camacho. Numerical reasoning with an ILP system capable of lazy evaluation and customised search. J. Logic Prog., 1999.

Code