
Learning programs with magic values
Céline Hocquette and Andrew Cropper

Departement of Computer Science
University of Oxford

celine.hocquette@cs.ox.ac.uk

1 - Introduction

A magic value is a constant symbol in a pro-
gram which has no clear explanation for its
choice: it ‘magically’ works.

f(List)←head(List,7)
f(List)←tail(List,Tail),f(Tail)

nextval(5)←does(player,press)
nextval(V)←does(player,noop),

true_val(T), succ(V,T)

drug(D) ← atom(D,A1),atom(D,A2),
atomtype(A1,o),atomtype(A2,h),
distance(A1,A2,0.53)

Fig. 1: Example of programs with magic values.

Existing program synthesis approaches rely on
enumeration of candidate magic values and
thus cannot scale to large or infinite domains.

We introduce an approach, implemented in
MAGICPOPPER, which can:

1. learn programs with magic values,
2. improve learning performance,
3. scale to large, even infinite, domains.

Existing approaches MAGICPOPPER

f(L)←head(L,H),c1(H)
f(L)←head(L,H),c2(H) f(L)←head(L,H),
f(L)←head(L,H),c3(H) @magic(H)
...

Fig. 2: Existing approaches enumerate possible
constant symbols while our approach does not.

2 - Learning framework

Key idea: do not enumerate every possible constant symbols, but instead use magic variables which
represent the possible constant symbols. Inspired by ALEPH’s lazy evaluation procedure [5].

Generate partial
hypotheses with
magic variables

in place of
constant symbols

Constrain
the search for
further partial
hypotheses

Test the hypothesis
over the examples
to find candidate

values for the
magic variables

Fig. 3: Our learning framework follows a generate, test
and constrain loop (Learning From Failures [2] setting
of ILP [1]).

f(Board) ← piece(Board,Piece1,Color1,Type1),@magic(Type1),
piece(Board,Piece2,Color2,Type2),@magic(Type2),
distance(Piece1,Piece2,Int),@magic(Int)
@magic(Color1),@magic(Color2)

f(Board) ← piece(Board,Piece1,white,rook),
piece(Board,Piece2,white,king),
distance(Piece1,Piece2,1)

f(Board) ← piece(Board,Piece1,white,king),
piece(Board,Piece2,black,king),
distance(Piece1,Piece2,3)

...

3 - Experiment 1

Q1 How well does MAGICPOPPER perform
compared to other approaches?

Task ALEPH POPPER MAGICPOPPER

md 100 100 100
buttons 81 100 100
coins 50 100 100
buttons-g 100 98 100
coins-g 50 100 100
krk 100 96 99
list 50 49 100
powerof2 83 100 100
append 95 96 96

Table 1: Predictive accuracies1.

Task ALEPH POPPER MAGICPOPPER

md 0 1 0
buttons 32 3 4
coins timeout 53 99
buttons-g 0 1 0
coins-g 0 0 0
krk 0 35 6
list 66 timeout 2
powerof2 0 182 0
append 1 298 0

Table 2: Learning times1.

▶ MAGICPOPPER can outperform existing
approaches.

4 - Experiment 2

Q2 How well does MAGICPOPPER scale?

POPPER [2] MAGICPOPPER ALEPH [4] METAGOL [3]

102 103 104 105 106

100

101

Number of constant symbols

Le
ar

ni
ng

tim
e

(s
)

Fig. 4: List: learning
times.

102 103 104 105 106

60

80

100

Number of constant symbols

A
cc

ur
ac

y
(%

)

Fig. 5: List: predictive ac-
curacies.

102 103 104 105 106

100

101

Number of constant symbols

Le
ar

ni
ng

tim
e

(s
)

Fig. 6: Md: learning
times.

102 103 104 105 106

60

80

100

Number of constant symbols

A
cc

ur
ac

y
(%

)

Fig. 7: Md: predictive ac-
curacies.

▶ MAGICPOPPER can scale well with the
number of constant symbols, up to mil-
lions.

5 - Experiment 3

Q3 Can MAGICPOPPER learn in infinite do-
mains?

Task ALEPH POPPER MAGICPOPPER

pi 100 50 99
physics 100 62 86
drug 63 50 98
next 50 49 100
sumk 50 50 100

Table 3: Predictive accuracies1.

Task ALEPH POPPER MAGICPOPPER

pi 4 timeout 1
physics 0 209 72
drug 5 1 6
next 0 1 25
sumk 0 0 99

Table 4: Learning times1.

▶ MAGICPOPPER can learn programs with
magic values from infinite domains.

6 - Conclusion

▶ Learning programs with magic values
from large, potentially infinite domains.

▶ MAGICPOPPER can outperform existing
approaches.

Future work and Limitations:
▶ numerical reasoning from multiple examples

(eg learning thresholds)
▶ learning from noisy examples

1Results are statistically significant.

References

[1] A. Cropper and A. Dumančić. Inductive logic program-
ming at 30: A new introduction. J. Artif. Intell. Res.,
2022.

[2] A. Cropper and R. Morel. Learning programs by learn-
ing from failures. Mach. Learn., 2021.

[3] S. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-
interpretive learning of higher-order dyadic datalog:
Predicate invention revisited. Mach. Learn., 2015.

[4] A. Srinivasan. The ALEPH manual. Mach. Learn. at the
Computing Laboratory, 2001.

[5] A. Srinivasan and R. Camacho. Numerical reasoning
with an ILP system capable of lazy evaluation and cus-
tomised search. J. Logic Prog., 1999.

Article Code


