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There must be a red piece in contact with a square piece

Positive structures Negative structures



Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output



Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]
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Color in green pixels in between two blue pixels



Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

?

Color in green pixels in between two blue pixels

input output



Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

input output



Inductive Logic Programming



Inductive Logic Programming

a form of program synthesis based on logic
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negative)
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Hypothesis / programLearner
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Inductive Logic Programming

a logic program

a logic program

a logic program



Positive examples Negative examples

zendo(ex1).
zendo(ex2).

zendo(ex3).
zendo(ex4).

Background Knowledge

piece(ex1, p1).
piece(ex1, p2).
piece(ex1, p3).
piece(ex1, p4).
blue(p1).
triangle(p1).
size(p1, 2).
small(2).
red(p2).
round(p2).
triangle(p4).
contact(p2, p3).
on(p2, p3).
right(p4, p3).
left(p1, p2).
…

ex1

ex4

ex3

ex2



Hypothesis

zendo(Structure) ← 
    piece(Structure,Piece1),
    red(Piece1),
    contact(Piece1,Piece2),
    square(Piece2).



Hypothesis

out(X,Y,blue) ← in(X,Y,blue).

out(X,Y,green) ← in(X1,Y,blue), in(X2,Y,blue), X1<X<X2.

out(X,Y,green) ← in(X,Y1,blue), in(X,Y2,blue), Y1<Y<Y2.

input output
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Why ILP?

● high generalisation ability
● learn from small amount of data
● learn from highly relational data



Why ILP?

● high generalisation ability
● learn from small amount of data
● learn from highly relational data
● learn explainable and verifiable models
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Challenge

hypothesis space = the set of all programs which may be learned by the learner

Large hypothesis spaces!



Challenge

Large hypothesis spaces!

Zendo: 108 hypotheses with 1 rule and at most 6 variables and at most 6 literals

hypothesis space = the set of all programs which may be learned by the learner



In this presentation

1. An approach that formulates the ILP problem as a CP problem

2. Discovering constraints

3. Learning programs with many rules

4. Learning programs with big rules



https://github.com/logic-and-learning-lab/Popper
Popper: an ILP system based on CP

1 - ILP as CP

https://github.com/logic-and-learning-lab/Popper




zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1).
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zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1).

we prune specialisations of h entails 0 positive examples



zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1).

entails 0 positive exampleswe prune specialisations of h

zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1),small(Piece1).
zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1),round(Piece1).
zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1),contact(Piece1,Piece2),red(Piece2).



zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1).

we prune generalisations of h entails 1 negative example





zendo(Structure) ← piece(Structure,Piece1),contact(Piece1,Piece2),blue(Piece2).



zendo(Structure) ← piece(Structure,Piece1),coord(Piece1,X,Y),geq(X,Y).



zendo(Structure) ← piece(Structure,Piece1),red(Piece1),contact(Piece1,Piece2),square(Piece2).

h is a solution!



Theorem: our approach learns an optimal solution (a textually minimal 
hypothesis) if one exists.



Why does it work?

● We do not precompute the hypothesis space
○ We can handle infinite domains, function symbols (lists)



Why does it work?

● We do not precompute the hypothesis space
○ We can handle infinite domains, function symbols (lists)

● Constraints to prune the hypothesis space



2 - Discovering constraints

Learning logic programs by discovering where not to search, Andrew Cropper and Céline Hocquette, AAAI, 2023

https://arxiv.org/pdf/2202.09806.pdf


Background Knowledge

even(0).
even(2).
even(4).
odd(1).
odd(3).
odd(5).
…

succ(0,1).
succ(1,2).
succ(2,3).
succ(3,4).
succ(4,5).
succ(5,6).
…

head([1],1).
head([2,3,4],2).
head([4,3,2,1],4).
head([3],3).
head([7,8,9],7).
head([6,7,8,9],6).
…



odd/1 and even/1 are mutually exclusive



odd/1 and even/1 are mutually exclusive

← odd(A), even(A).



odd/1 and even/1 are mutually exclusive

← odd(A), even(A).

zendo(A) ← piece(A,B), size(B,C), odd(C), even(C).
zendo(A) ← piece(A,B), blue(B), coord1(B,C), odd(C), even(C).
zendo(A) ← piece(A,B), contact(B,C), coord2(C,D), geq(D,E), odd(E), even(E).



succ/2 is irreflexive, injective, functional, antitransitive, antitriangular, and 
asymmetric.



succ/2 is irreflexive, injective, functional, antitransitive, antitriangular, and 
asymmetric.

← succ(A,A).
← succ(A,B), succ(A,C), B!=C.
← succ(A,B), succ(C,B), C!=A.
← succ(A,B), succ(A,C), C!=A.
← succ(A,B), succ(B,C), succ(A,C).
← succ(A,B), succ(B,C), succ(C,A).
← succ(A,B), succ(B,A).



succ/2 is irreflexive, injective, functional, antitransitive, antitriangular, and 
asymmetric.

zendo(A) ← piece(A,B), size(B,C), succ(C,C).
zendo(A) ← piece(A,B), coord2(B,C), coord1(B,D), succ(C,E), succ(D,E).
zendo(A) ← piece(A,B), size(B,C), piece(A,D), size(D,E), succ(C,E), succ(E,C).
zendo(A) ← piece(A,B), coord1(B,C), succ(C,D), succ(D,E), succ(C,E).
zendo(A) ← piece(A,B), coord1(B,C), succ(C,D), succ(D,E), succ(E,C).



How does it work?

We use an ASP program to discover the constraints.
We adopt a closed world assumption.



Why does it work?

● Only need a counter-example to eliminate a property

Background knowledge constraint 
discovery time (s)



Why does it work?

● Only need a counter-example to eliminate a property

● Constraints can eliminate many hypotheses

discovering constraints about the succ/2 relation 
reduces the number of rules in the hypothesis space 
from 1,189,916 to 70,270, a 94% reduction



win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player) 
win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player) 
win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)
win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player) 

3 - Learning programs with many rules

Learning logic programs by combing programs, Andrew Cropper and Céline Hocquette, ECAI, 2023



r1, r2, r3 and r4 do not depend on each other

r1: win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player) 

r2: win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player) 

r3: win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)

r4: win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)



Idea

Learn small programs that entail some of the positive examples

Combine these programs to learn programs with many rules that entail many 
positive examples



Our approach



Our approach



Combine stage
Input: a set P of programs, with their size and coverage, such that for all p∈P:

- p covers at least one positive example 
- p does not cover any negative example



Combine stage
Input: a set P of programs, with their size and coverage, such that for all p∈P:

- p covers at least one positive example 
- p does not cover any negative example

Output: a set of programs P’⊂P (a combination of programs) such that:
- P’ covers as many positive examples as possible
- P’ is minimal in size



Combine stage
Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6

Input: 



Combine stage

Output:
{p1,p3,p5} covers {e1,e2,e3,e5,e6,e7,e8,e9} and has size 12

Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6

Input: 



Our approach



Our approach



win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)
 
win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)
 
win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)

win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)



Separable program

win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)
 
win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)
 
win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)

win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)



line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)



Non-separable program

line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)



Why does it work?

● Searching over non-separable programs only can vastly reduce 
the hypothesis space.



Why does it work?

separable non-separable

mk m

m rules in the hypothesis space, 
at most k rules in a program

● Searching over non-separable programs only can vastly reduce 
the hypothesis space.



Why does it work?

● Searching over non-separable programs only can vastly reduce 
the hypothesis space.

● We can leverage recent progress in solvers



Theorem: our approach learns an optimal solution (a textually minimal 
hypothesis) if one exists.



4 - Learning programs with big rules

Learning big logical rules by joining small rules, Céline Hocquette, Andreas Niskanen, Rolf Morel, Matti Järvisalo, and 
Andrew Cropper, IJCAI, 2024.

zendo(Structure) ← 

piece(Structure,Piece1),blue(Piece1),round(Piece1),

piece(Structure,Piece2),red(Piece2),square(Piece2),

piece(Structure,Piece3),yellow(Piece3),triangle(Piece3)
.



Idea

Learn small rules that entail some positive and some negative examples 

zendo1(Structure) ← piece(Structure,Piece1),blue(Piece1),round(Piece1).

zendo2(Structure) ← piece(Structure,Piece2),red(Piece2),square(Piece2).

zendo3(Structure) ← piece(Structure,Piece3),yellow(Piece3),triangle(Piece3).



Idea

Learn small rules that entail some positive and some negative examples 

zendo1(Structure) ← piece(Structure,Piece1),blue(Piece1),round(Piece1).

zendo2(Structure) ← piece(Structure,Piece2),red(Piece2),square(Piece2).

zendo3(Structure) ← piece(Structure,Piece3),yellow(Piece3),triangle(Piece3).

Join these rules to learn big rules that entail some positive examples and no 
negative examples

zendo1(Structure) ← zendo1(Structure),zendo2(Structure),zendo3(Structure).



Our approach



Join stage
Input: a set P of programs, with their size and coverage, such that for all p∈P:

- p covers at least one positive example 
- p covers at least one negative example



Join stage
Input: a set P of programs, with their size and coverage, such that for all p∈P:

- p covers at least one positive example 
- p covers at least one negative example

Output: sets of programs P’⊂P (conjunctions of programs) such that:
- P’ does not cover any negative example



Join stage
Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n1,n2} 5

Input: 



Join stage

Output:
c1={p3,p4,p5} covers {e1,e2} and has size 13

Input: Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n2,n3} 5



Join stage

Output:
c1={p3,p4,p5} covers {e1,e2} and has size 13
c2={p1,p3} covers {e1} and has size 5

Input: Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n1,n2} 5



Join stage

Output:
c1={p3,p4,p5} covers {e1,e2} and has size 13
c2={p1,p3} covers {e1} and has size 5
c3={p2,p3} covers {e2} and has size 5

Input: Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n1,n2} 5





zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)



zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

Splittable program

Head variable body-only variable



zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)



zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)

Non-splittable program



Why does it work?

● Searching over non-splittable programs only can vastly reduce 
the hypothesis space.

● We can leverage recent progress in SAT-solvers



Future projects: which cost function?



Which cost function?

- minimum description length: trade-off model complexity 
(program size) and data fit (training accuracy)

Learning MDL logic programs from noisy data, Céline Hocquette, Andreas Niskanen, Matti Järvisalo, and Andrew 
Cropper, AAAI, 2024.



Which cost function?

- minimum description length: trade-off model complexity 
(program size) and data fit (training accuracy)

- is minimising the size of programs important?

- learning from positive only data



Thank you!

celinehocquette@gmail.com



Questions?


