Learning logic programs with constraint programming

Céline Hocquette University of Oxford / Southampton

There must be a red piece in contact with a square piece

Color in green pixels in between two blue pixels

Color in green pixels in between two blue pixels

a form of program synthesis based on logic

Examples (positive or negative)

Examples (positive or negative)

Background Knowledge

Positive examples	Negative examples
zendo(ex1).	zendo(ex3).
zendo(ex2).	zendo(ex4).


```
Background Knowledge
```

piece(ex1, p1). piece(ex1, p2). piece(ex1, p3). piece(ex1, p4). blue(p1). triangle(p1). size(p1, 2). small(2). red(p2). round(p2). triangle(p4). contact(p2, p3). on(p2, p3). right(p4, p3). left(p1, p2).

•••

Hypothesis

zendo(Structure) ←
piece(Structure,Piece1),
red(Piece1),
contact(Piece1,Piece2),
square(Piece2).

• high generalisation ability

- high generalisation ability
- learn from small amount of data

- high generalisation ability
- learn from small amount of data
- learn from highly relational data

- high generalisation ability
- learn from small amount of data
- learn from highly relational data
- learn explainable and verifiable models

hypothesis space = the set of all programs which may be learned by the learner

Large hypothesis spaces!

hypothesis space = the set of all programs which may be learned by the learner

Large hypothesis spaces!

Zendo: 10⁸ hypotheses with 1 rule and at most 6 variables and at most 6 literals

In this presentation

- 1. An approach that formulates the ILP problem as a CP problem
- 2. Discovering constraints
- 3. Learning programs with many rules
- 4. Learning programs with big rules

1 - ILP as CP

Popper: an ILP system based on CP <u>https://github.com/logic-and-learning-lab/Popper</u>

Theorem: our approach learns an optimal solution (a textually minimal hypothesis) if one exists.

- We do not precompute the hypothesis space
 - We can handle infinite domains, function symbols (lists)

- We do not precompute the hypothesis space
 - We can handle infinite domains, function symbols (lists)

• Constraints to prune the hypothesis space

2 - Discovering constraints

Learning logic programs by discovering where not to search, Andrew Cropper and Céline Hocquette, AAAI, 2023

Background Knowledge		
even(0).	succ(0,1).	head([1],1).
even(2).	succ(1,2).	head([2,3,4],2).
even(4).	succ(2,3).	head([4,3,2,1],4).
odd(1).	succ(3,4).	head([3],3).
odd(3).	succ(4,5).	head([7,8,9],7).
odd(5).	succ(5,6).	head([6,7,8,9],6).
•••	•••	

odd/1 and even/1 are mutually exclusive

odd/1 and even/1 are mutually exclusive

← odd(A), even(A).

odd/1 and even/1 are mutually exclusive

← odd(A), even(A).

```
zendo(A) ← piece(A,B), size(B,C), odd(C), even(C).
zendo(A) ← piece(A,B), blue(B), coord1(B,C), odd(C), even(C).
zendo(A) ← piece(A,B), contact(B,C), coord2(C,D), geq(D,E), odd(E), even(E).
```

succ/2 is irreflexive, injective, functional, antitransitive, antitriangular, and asymmetric.

succ/2 is irreflexive, injective, functional, antitransitive, antitriangular, and asymmetric.

- ← succ(A,A).
- \leftarrow succ(A,B), succ(A,C), B!=C.
- ← succ(A,B), succ(C,B), C!=A.
- ← succ(A,B), succ(A,C), C!=A.
- ← succ(A,B), succ(B,C), succ(A,C).
- ← succ(A,B), succ(B,C), succ(C,A).
- ← succ(A,B), succ(B,A).

succ/2 is irreflexive, injective, functional, antitransitive, antitriangular, and asymmetric.

zendo(A) ← piece(A,B), size(B,C), succ(C,C).
zendo(A) ← piece(A,B), coord2(B,C), coord1(B,D), succ(C,E), succ(D,E).
zendo(A) ← piece(A,B), size(B,C), piece(A,D), size(D,E), succ(C,E), succ(E,C).
zendo(A) ← piece(A,B), coord1(B,C), succ(C,D), succ(D,E), succ(C,E).
zendo(A) ← piece(A,B), coord1(B,C), succ(C,D), succ(D,E), succ(E,C).

How does it work?

Name	Property	Constraint	Example
Irreflexive	$\neg p(A,A)$	$\leftarrow p(A,A)$	\leftarrow brother(A,A)
Antitransitive	$p(A,B), p(B,C) \rightarrow \neg p(A,C)$	$\leftarrow p(A,B), p(B,C), p(A,C)$	$\leftarrow succ(A,B), succ(B,C), succ(A,C)$
Antitriangular	$p(A,B), p(B,C) \rightarrow \neg p(C,A)$	$\leftarrow p(A,B), p(B,C), p(C,A)$	\leftarrow tail(A,B), tail(B,C), tail(C,A)
Injective	$p(A,B), p(C,B) \rightarrow A = C$	$\leftarrow p(A,B), p(C,B), A \neq C$	$\leftarrow succ(A,B), succ(C,B), A \neq C$
Functional	$p(A,B), p(A,C) \rightarrow B = C$	$\leftarrow p(A,B), p(A,C), B \neq C$	\leftarrow length(A,B), length(A,C), $B \neq C$
Asymmetric	$p(A,B) \rightarrow \neg p(B,A)$	$\leftarrow p(A,B), p(B,A)$	\leftarrow mother(A,B), mother(B,A)
Exclusive	$p(A) \rightarrow \neg q(A)$	$\leftarrow p(A), q(A)$	$\leftarrow odd(A)$, even(A)

We use an ASP program to discover the constraints. We adopt a closed world assumption.

• Only need a counter-example to eliminate a property

Domain	Time
trains	$\mid 0.22 \pm 0.00$
zendo	$ 0.03 \pm 0.00$
imdb	$\mid 0.02 \pm 0.00$
krk	$ 0.10 \pm 0.00$
rps	0.02 ± 0.00
centipede	0.02 ± 0.00
md	0.01 ± 0.00
buttons	0.02 ± 0.00
attrition	0.01 ± 0.00
coins	0.03 ± 0.00
synthesis	$ $ 4.00 \pm 0.40

Background knowledge constraint discovery time (s)

- Only need a counter-example to eliminate a property
- Constraints can eliminate many hypotheses

discovering constraints about the succ/2 relation reduces the number of rules in the hypothesis space from 1,189,916 to 70,270, a 94% reduction

3 - Learning programs with many rules

win(Board,Player) < cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)
win(Board,Player) < cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)
win(Board,Player) < cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)
win(Board,Player) < cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)</pre>

Learning logic programs by combing programs, Andrew Cropper and Céline Hocquette, ECAI, 2023

r₁: win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)
r₂: win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)
r₃: win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)
r₄: win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)
r₄: win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

Learn small programs that entail some of the positive examples

Combine these programs to learn programs with many rules that entail many positive examples

Our approach

Our approach

Input: a set P of programs, with their size and coverage, such that for all $p \in P$:

- p covers at least one positive example
- p does not cover any negative example

Combine stage

Input: a set P of programs, with their size and coverage, such that for all $p \in P$:

- p covers at least one positive example
- p does not cover any negative example

Output: a set of programs $P' \subset P$ (a combination of programs) such that:

- P' covers as many positive examples as possible
- P' is minimal in size

Input:

Program	Positive examples covered	Size
p1	{e1,e2,e3}	3
p2	{e9}	3
р3	{e1,e3,e5,e6,e7}	4
p4	{e2,e6,e7}	4
р5	{e2,e5,e8,e9}	5
p6	{e8,e9}	6

Combine stage

Input:

Program	Positive examples covered	Size
р1	{e1,e2,e3}	3
p2	{e9}	3
р3	{e1,e3,e5,e6,e7}	4
p4	{e2,e6,e7}	4
р5	{e2,e5,e8,e9}	5
p6	{e8,e9}	6

Output: {p1,p3,p5} covers {e1,e2,e3,e5,e6,e7,e8,e9} and has size 12

Our approach

win(Board,Player) < cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)</pre>

win(Board,Player) < cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)</pre>

win(Board,Player) < cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)</pre>

win(Board,Player) < cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)</pre>

win(Board,Player) < cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)</pre>

win(Board,Player) < cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)</pre>

win(Board,Player) < cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)</pre>

win(Board,Player) < cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)</pre>

Separable program

line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)

line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)

line(Board,0,Player) ← cell(Board,0,Player)

Non-separable program

• Searching over non-separable programs only can vastly reduce the hypothesis space.

• Searching over non-separable programs only can vastly reduce the hypothesis space.

m rules in the hypothesis space, at most k rules in a program

separable	non-separable
m ^k	m

- Searching over non-separable programs only can vastly reduce the hypothesis space.
- We can leverage recent progress in solvers

Task	$\mathbf{combine}$	no combine
zendo1	3 ± 1	7 ± 1
zendo2	49 ± 5	timeout
zendo3	55 ± 6	timeout
zendo4	53 ± 11	3243 ± 359

Table 1: Learning times (seconds) with a 60 minutes timeout
Theorem: our approach learns an optimal solution (a textually minimal hypothesis) if one exists.

4 - Learning programs with big rules

Negative examples

zendo(Structure) +

piece(Structure,Piece1),blue(Piece1),round(Piece1),

piece(Structure, Piece2), red(Piece2), square(Piece2),

piece(Structure, Piece3), yellow(Piece3), triangle(Piece3)

Learning big logical rules by joining small rules, Céline Hocquette, Andreas Niskanen, Rolf Morel, Matti Järvisalo, and Andrew Cropper, IJCAI, 2024.

.

Learn small rules that entail some positive and some negative examples

Learn small rules that entail some positive and some negative examples

Join these rules to learn big rules that entail some positive examples and no negative examples

zendo1(Structure) < zendo1(Structure), zendo2(Structure), zendo3(Structure).</pre>

Our approach

Input: a set P of programs, with their size and coverage, such that for all $p \in P$:

- p covers at least one positive example
- p covers at least one negative example

Input: a set P of programs, with their size and coverage, such that for all $p \in P$:

- p covers at least one positive example
- p covers at least one negative example

Output: sets of programs $P' \subset P$ (conjunctions of programs) such that:

- P' does not cover any negative example

Input:

Program	Positive examples covered	Negative examples covered	Size
р1	{e1}	{n3}	2
p2	{e2}	{n3}	2
р3	{e1,e2}	{n1,n2}	3
p4	{e1,e2}	{n1,n3}	5
p5	{e1,e2}	{n1,n2}	5

Input:

Program	Positive examples covered	Negative examples covered	Size
р1	{e1}	{n3}	2
p2	{e2}	{n3}	2
р3	{e1,e2}	{n1,n2}	3
p4	{e1,e2}	{n1,n3}	5
p5	{e1,e2}	{n2,n3}	5

Output: c1={p3,p4,p5} covers {e1,e2} and has size 13

Input:

Program	Positive examples covered	Negative examples covered	Size
р1	{e1}	{n3}	2
p2	{e2}	{n3}	2
р3	{e1,e2}	{n1,n2}	3
p4	{e1,e2}	{n1,n3}	5
р5	{e1,e2}	{n1,n2}	5

Output: c1={p3,p4,p5} covers {e1,e2} and has size 13 c2={p1,p3} covers {e1} and has size 5

Input:

Program	Positive examples covered	Negative examples covered	Size
р1	{e1}	{n3}	2
p2	{e2}	{n3}	2
р3	{e1,e2}	{n1,n2}	3
p4	{e1,e2}	{n1,n3}	5
p5	{e1,e2}	{n1,n2}	5

Output:

c1={p3,p4,p5} covers {e1,e2} and has size 13 c2={p1,p3} covers {e1} and has size 5 c3={p2,p3} covers {e2} and has size 5

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

Splittable program

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)

Non-splittable program

Why does it work?

- Searching over non-splittable programs only can vastly reduce the hypothesis space.
- We can leverage recent progress in SAT-solvers

Future projects: which cost function?

We use a MaxSAT solver to search for an optimal combination of programs

Which cost function?

- minimum description length: trade-off model complexity (program size) and data fit (training accuracy)

Learning MDL logic programs from noisy data, Céline Hocquette, Andreas Niskanen, Matti Järvisalo, and Andrew Cropper, AAAI, 2024.

Which cost function?

- minimum description length: trade-off model complexity (program size) and data fit (training accuracy)
- is minimising the size of programs important?
- learning from positive only data

Thank you!

celinehocquette@gmail.com

Questions?