
Learning logic programs with
constraint programming

Céline Hocquette
University of Oxford / Southampton

Positive structures Negative structures

There must be a red piece in contact with a square piece

Positive structures Negative structures

Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

Color in green pixels in between two blue pixels

Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

?

Color in green pixels in between two blue pixels

input output

Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

input output

Inductive Logic Programming

Inductive Logic Programming

a form of program synthesis based on logic

Examples
(positive or
negative)

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Learner
(ILP system)

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Hypothesis / programLearner
(ILP system)

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Hypothesis / programLearner
(ILP system)

Inductive Logic Programming

a logic program

a logic program

a logic program

Positive examples Negative examples

zendo(ex1).
zendo(ex2).

zendo(ex3).
zendo(ex4).

Background Knowledge

piece(ex1, p1).
piece(ex1, p2).
piece(ex1, p3).
piece(ex1, p4).
blue(p1).
triangle(p1).
size(p1, 2).
small(2).
red(p2).
round(p2).
triangle(p4).
contact(p2, p3).
on(p2, p3).
right(p4, p3).
left(p1, p2).
…

ex1

ex4

ex3

ex2

Hypothesis

zendo(Structure) ←
 piece(Structure,Piece1),
 red(Piece1),
 contact(Piece1,Piece2),
 square(Piece2).

Hypothesis

out(X,Y,blue) ← in(X,Y,blue).

out(X,Y,green) ← in(X1,Y,blue), in(X2,Y,blue), X1<X<X2.

out(X,Y,green) ← in(X,Y1,blue), in(X,Y2,blue), Y1<Y<Y2.

input output

Why ILP?

Why ILP?

● high generalisation ability

Why ILP?

● high generalisation ability
● learn from small amount of data

Why ILP?

● high generalisation ability
● learn from small amount of data
● learn from highly relational data

Why ILP?

● high generalisation ability
● learn from small amount of data
● learn from highly relational data
● learn explainable and verifiable models

Challenge

Challenge

hypothesis space = the set of all programs which may be learned by the learner

Large hypothesis spaces!

Challenge

Large hypothesis spaces!

Zendo: 108 hypotheses with 1 rule and at most 6 variables and at most 6 literals

hypothesis space = the set of all programs which may be learned by the learner

In this presentation

1. An approach that formulates the ILP problem as a CP problem

2. Discovering constraints

3. Learning programs with many rules

4. Learning programs with big rules

https://github.com/logic-and-learning-lab/Popper
Popper: an ILP system based on CP

1 - ILP as CP

https://github.com/logic-and-learning-lab/Popper

zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1).

zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1).

entails 0 positive examples

zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1).

we prune specialisations of h entails 0 positive examples

zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1).

entails 0 positive exampleswe prune specialisations of h

zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1),small(Piece1).
zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1),round(Piece1).
zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1),contact(Piece1,Piece2),red(Piece2).

zendo(Structure) ← piece(Structure,Piece1),yellow(Piece1).

we prune generalisations of h entails 1 negative example

zendo(Structure) ← piece(Structure,Piece1),contact(Piece1,Piece2),blue(Piece2).

zendo(Structure) ← piece(Structure,Piece1),coord(Piece1,X,Y),geq(X,Y).

zendo(Structure) ← piece(Structure,Piece1),red(Piece1),contact(Piece1,Piece2),square(Piece2).

h is a solution!

Theorem: our approach learns an optimal solution (a textually minimal
hypothesis) if one exists.

Why does it work?

● We do not precompute the hypothesis space
○ We can handle infinite domains, function symbols (lists)

Why does it work?

● We do not precompute the hypothesis space
○ We can handle infinite domains, function symbols (lists)

● Constraints to prune the hypothesis space

2 - Discovering constraints

Learning logic programs by discovering where not to search, Andrew Cropper and Céline Hocquette, AAAI, 2023

https://arxiv.org/pdf/2202.09806.pdf

Background Knowledge

even(0).
even(2).
even(4).
odd(1).
odd(3).
odd(5).
…

succ(0,1).
succ(1,2).
succ(2,3).
succ(3,4).
succ(4,5).
succ(5,6).
…

head([1],1).
head([2,3,4],2).
head([4,3,2,1],4).
head([3],3).
head([7,8,9],7).
head([6,7,8,9],6).
…

odd/1 and even/1 are mutually exclusive

odd/1 and even/1 are mutually exclusive

← odd(A), even(A).

odd/1 and even/1 are mutually exclusive

← odd(A), even(A).

zendo(A) ← piece(A,B), size(B,C), odd(C), even(C).
zendo(A) ← piece(A,B), blue(B), coord1(B,C), odd(C), even(C).
zendo(A) ← piece(A,B), contact(B,C), coord2(C,D), geq(D,E), odd(E), even(E).

succ/2 is irreflexive, injective, functional, antitransitive, antitriangular, and
asymmetric.

succ/2 is irreflexive, injective, functional, antitransitive, antitriangular, and
asymmetric.

← succ(A,A).
← succ(A,B), succ(A,C), B!=C.
← succ(A,B), succ(C,B), C!=A.
← succ(A,B), succ(A,C), C!=A.
← succ(A,B), succ(B,C), succ(A,C).
← succ(A,B), succ(B,C), succ(C,A).
← succ(A,B), succ(B,A).

succ/2 is irreflexive, injective, functional, antitransitive, antitriangular, and
asymmetric.

zendo(A) ← piece(A,B), size(B,C), succ(C,C).
zendo(A) ← piece(A,B), coord2(B,C), coord1(B,D), succ(C,E), succ(D,E).
zendo(A) ← piece(A,B), size(B,C), piece(A,D), size(D,E), succ(C,E), succ(E,C).
zendo(A) ← piece(A,B), coord1(B,C), succ(C,D), succ(D,E), succ(C,E).
zendo(A) ← piece(A,B), coord1(B,C), succ(C,D), succ(D,E), succ(E,C).

How does it work?

We use an ASP program to discover the constraints.
We adopt a closed world assumption.

Why does it work?

● Only need a counter-example to eliminate a property

Background knowledge constraint
discovery time (s)

Why does it work?

● Only need a counter-example to eliminate a property

● Constraints can eliminate many hypotheses

discovering constraints about the succ/2 relation
reduces the number of rules in the hypothesis space
from 1,189,916 to 70,270, a 94% reduction

win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)
win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)
win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)
win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

3 - Learning programs with many rules

Learning logic programs by combing programs, Andrew Cropper and Céline Hocquette, ECAI, 2023

r1, r2, r3 and r4 do not depend on each other

r1: win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)

r2: win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)

r3: win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)

r4: win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

Idea

Learn small programs that entail some of the positive examples

Combine these programs to learn programs with many rules that entail many
positive examples

Our approach

Our approach

Combine stage
Input: a set P of programs, with their size and coverage, such that for all p∈P:

- p covers at least one positive example
- p does not cover any negative example

Combine stage
Input: a set P of programs, with their size and coverage, such that for all p∈P:

- p covers at least one positive example
- p does not cover any negative example

Output: a set of programs P’⊂P (a combination of programs) such that:
- P’ covers as many positive examples as possible
- P’ is minimal in size

Combine stage
Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6

Input:

Combine stage

Output:
{p1,p3,p5} covers {e1,e2,e3,e5,e6,e7,e8,e9} and has size 12

Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6

Input:

Our approach

Our approach

win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)

win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)

win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)

win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

Separable program

win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)

win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)

win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)

win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)

Non-separable program

line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)

Why does it work?

● Searching over non-separable programs only can vastly reduce
the hypothesis space.

Why does it work?

separable non-separable

mk m

m rules in the hypothesis space,
at most k rules in a program

● Searching over non-separable programs only can vastly reduce
the hypothesis space.

Why does it work?

● Searching over non-separable programs only can vastly reduce
the hypothesis space.

● We can leverage recent progress in solvers

Theorem: our approach learns an optimal solution (a textually minimal
hypothesis) if one exists.

4 - Learning programs with big rules

Learning big logical rules by joining small rules, Céline Hocquette, Andreas Niskanen, Rolf Morel, Matti Järvisalo, and
Andrew Cropper, IJCAI, 2024.

zendo(Structure) ←

piece(Structure,Piece1),blue(Piece1),round(Piece1),

piece(Structure,Piece2),red(Piece2),square(Piece2),

piece(Structure,Piece3),yellow(Piece3),triangle(Piece3)
.

Idea

Learn small rules that entail some positive and some negative examples

zendo1(Structure) ← piece(Structure,Piece1),blue(Piece1),round(Piece1).

zendo2(Structure) ← piece(Structure,Piece2),red(Piece2),square(Piece2).

zendo3(Structure) ← piece(Structure,Piece3),yellow(Piece3),triangle(Piece3).

Idea

Learn small rules that entail some positive and some negative examples

zendo1(Structure) ← piece(Structure,Piece1),blue(Piece1),round(Piece1).

zendo2(Structure) ← piece(Structure,Piece2),red(Piece2),square(Piece2).

zendo3(Structure) ← piece(Structure,Piece3),yellow(Piece3),triangle(Piece3).

Join these rules to learn big rules that entail some positive examples and no
negative examples

zendo1(Structure) ← zendo1(Structure),zendo2(Structure),zendo3(Structure).

Our approach

Join stage
Input: a set P of programs, with their size and coverage, such that for all p∈P:

- p covers at least one positive example
- p covers at least one negative example

Join stage
Input: a set P of programs, with their size and coverage, such that for all p∈P:

- p covers at least one positive example
- p covers at least one negative example

Output: sets of programs P’⊂P (conjunctions of programs) such that:
- P’ does not cover any negative example

Join stage
Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n1,n2} 5

Input:

Join stage

Output:
c1={p3,p4,p5} covers {e1,e2} and has size 13

Input: Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n2,n3} 5

Join stage

Output:
c1={p3,p4,p5} covers {e1,e2} and has size 13
c2={p1,p3} covers {e1} and has size 5

Input: Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n1,n2} 5

Join stage

Output:
c1={p3,p4,p5} covers {e1,e2} and has size 13
c2={p1,p3} covers {e1} and has size 5
c3={p2,p3} covers {e2} and has size 5

Input: Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n1,n2} 5

zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

Splittable program

Head variable body-only variable

zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)

zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)

Non-splittable program

Why does it work?

● Searching over non-splittable programs only can vastly reduce
the hypothesis space.

● We can leverage recent progress in SAT-solvers

Future projects: which cost function?

Which cost function?

- minimum description length: trade-off model complexity
(program size) and data fit (training accuracy)

Learning MDL logic programs from noisy data, Céline Hocquette, Andreas Niskanen, Matti Järvisalo, and Andrew
Cropper, AAAI, 2024.

Which cost function?

- minimum description length: trade-off model complexity
(program size) and data fit (training accuracy)

- is minimising the size of programs important?

- learning from positive only data

Thank you!

celinehocquette@gmail.com

Questions?

