
Learning logic programs by 
discovering where not to search

Andrew Cropper and Céline Hocquette 



What is this talk about?

• A simple approach to improve the learning performance 
of an ILP system 



What is this talk about?

• A simple approach to improve the learning performance 
of an ILP system 

• The idea is to discover where not to search before 
searching for a solution



No technical details



Inductive logic programming



Examples

Inductive logic programming



Examples

Background 
knowledge

Inductive logic programming



Examples

Background 
knowledge

ILP

Inductive logic programming



Examples

Background 
knowledge

ILP Hypothesis/
program

Inductive logic programming



Examples

input outpu
tdog g

sheep p
chicken n



Examples

input outpu
tdog g

sheep p
chicken n

representation
last(dog,g)

last(sheep,p)
last(chicken,n)



BK

head([H|_],H). 
tail([_|T],T). 
empty(A).



Hypothesis

last(A,B):-tail(A,C),empty(C),head(A,B). 
last(A,B):-tail(A,C),f(C,B).



Motivation 

Very large hypothesis spaces



Idea

Can we discover where not to search before 
searching for a solution?



BK





tail is not reflexive



tail is not symmetric



tail is not transitive



odd(B) and even(B) are unsatisfiable



We have eliminated hypotheses before even 
considering the examples



How?



How?

1. Preprocess the BK to discover constraints 
 



How?

1. Preprocess the BK to discover constraints 
 
2. Use the constraints to bootstrap a constraint-
driven ILP system



Constraint discovery



Constraint discovery

Use ASP programs to discover the constraints



Functional property

p(A,B), p(A,C) → B=C



Functional constraint

← p(A,B), p(A,C), B!=C



Functional example

← length(A,B), length(A,C), B!=C



Bootstrapping

We use the constraints to bootstrap Popper, a 
constraint-driven ILP system.



Does it work?



Does it work?

How long does BK preprocessing take?





Does it work?

Q1. Can BK constraint discovery reduce learning 
times?



Does it work?







succ/2 



succ/2 

irreflexive, injective, functional, antitransitive, antitriangular, and 
asymmetric



succ/2 

irreflexive, injective, functional, antitransitive, antitriangular, and 
asymmetric

The resulting constraints reduce the number of rules in the 
hypothesis space from 1,189,916 to 70,270



Q2. What effect does BK constraint discovery 
have on learning times given larger hypothesis 
spaces?

Does it work?





Q3. How long does BK constraint discovery take 
given larger BK? 

Does it work?





Why does this idea work?

We only need one counter-example to eliminate a 
property



Why does this idea work?

Our properties are small



Why care?

Simple, general, and performs well



Why care?

Simple, general, and performs well

Can easily be made better



What can be improved?

Assume a finite domain (Datalog programs)



What can be improved?

Assume given properties to discover



https://github.com/logic-and-learning-lab/Popper

Questions?

Poster ID 191 


