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head([H|_],H). 
tail([_|T],T). 
empty(A).



Hypothesis

last(A,B):-tail(A,C),empty(C),head(A,B). 
last(A,B):-tail(A,C),f(C,B).



Motivation 

Very large hypothesis spaces



Idea

Can we discover where not to search before 
searching for a solution?
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tail is not reflexive



tail is not symmetric



tail is not transitive



odd(B) and even(B) are unsatisfiable



We have eliminated hypotheses before even 
considering the examples
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1. Preprocess the BK to discover constraints 
 
2. Use the constraints to bootstrap a constraint-
driven ILP system
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Constraint discovery

Use ASP programs to discover the constraints



Functional property

p(A,B), p(A,C) → B=C



Functional constraint

← p(A,B), p(A,C), B!=C



Functional example

← length(A,B), length(A,C), B!=C



Bootstrapping

We use the constraints to bootstrap Popper, a 
constraint-driven ILP system.
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Does it work?

Q1. Can BK constraint discovery reduce learning 
times?



Does it work?
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succ/2 

irreflexive, injective, functional, antitransitive, antitriangular, and 
asymmetric

The resulting constraints reduce the number of rules in the 
hypothesis space from 1,189,916 to 70,270



Q2. What effect does BK constraint discovery 
have on learning times given larger hypothesis 
spaces?

Does it work?





Q3. How long does BK constraint discovery take 
given larger BK? 

Does it work?





Why does this idea work?

We only need one counter-example to eliminate a 
property



Why does this idea work?

Our properties are small
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Why care?

Simple, general, and performs well

Can easily be made better



What can be improved?

Assume a finite domain (Datalog programs)



What can be improved?

Assume given properties to discover



https://github.com/logic-and-learning-lab/Popper

Questions?

Poster ID 191 


