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1 - Introduction

The goal of inductive logic programming (ILP)
[3] is to search for a hypothesis that generalises
training examples and background knowledge
(BK).

head(aaai,a) tail(aaai,aai) even(2)
head(ijcai,i) tail(ijcai,jcai) even(4)
head(ecai,e) tail(ecai,cai) odd(1)
tail(ai,i) tail(cai,ai) odd(3)

Fig. 1: Example BK.

head and tail are irreflexive, asymmetric, func-
tional, antitriangular and antitransitive.
odd and even are mutually exclusive.

We can remove from the hypothesis space
rules such as:

r1 = h← tail(A,A)
r2 = h← tail(A,B), tail(B,A)
r3 = h← tail(A,B), tail(B,C), tail(A,C)
r4 = h← head(A,B), odd(B), even(B)

We introduce an approach, implemented in
DISCO, which can:
1. automatically discover functional dependen-

cies and relational properties, such as asym-
metry and antitransitivity,

2. substantially reduce learning times by 97%,
3. scale to BK with millions of facts.

2 - Our approach

The key idea is to use the BK to discover constraints to restrict the hypothesis space before search-
ing for a solution.

Name Property Constraint Example

Irreflexive ¬p(A,A) ← p(A,A) ← brother(A,A)
Antitransitive p(A,B), p(B,C)→ ¬p(A,C) ← p(A,B), p(B,C), p(A,C) ← succ(A,B), succ(B,C), succ(A,C)
Antitriangular p(A,B), p(B,C)→ ¬p(C,A) ← p(A,B), p(B,C), p(C,A) ← tail(A,B), tail(B,C), tail(C,A)
Injective p(A,B), p(C,B)→ A=C ← p(A,B), p(C,B), A,C ← succ(A,B), succ(C,B), A,C
Functional p(A,B), p(A,C)→ B=C ← p(A,B), p(A,C), B,C ← length(A,B), length(A,C), B,C
Asymmetric p(A,B)→ ¬p(B,A) ← p(A,B), p(B,A) ← mother(A,B), mother(B,A)
Exclusive p(A)→ ¬q(A) ← p(A), q(A) ← odd(A), even(A)

Table 1: Properties and constraints. We generalise the properties to higher arities.

Our approach works in two stages:

1. Property identification: we identify relational properties and functional dependencies [2] (Table
1) from the BK. Implemented as a bottom-up approach [5] in ASP.

asymmetric(P)← holds(P,(_,_)), not non_asymmetric(P)
non_asymmetric(P)← holds(P,(A,B)), holds(P,(B,A))

2. Constrain: we use the properties to build hypothesis constraints to bootstrap an ILP system [1]:

← asymmetric(P), b_lit(R,P,(A,B)), b_lit(R,P,(B,A))

Proposition 1 (Optimal Soundness) The constraints built by our approach are optimally sound:
they do not prune optimal solutions from the hypothesis space.

3 - Experiment 1

Q1 Can BK constraint discovery reduce learn-
ing times?

Task POPPER DISCO Change

trains1 5 ± 0.1 4 ± 0.1 -20%
trains2 5 ± 0.2 4 ± 0.3 -20%
trains3 27 ± 0.8 22 ± 0.6 -18%
trains4 24 ± 0.8 20 ± 0.5 -16%

zendo1 8 ± 2 6 ± 1 -25%
zendo2 32 ± 2 31 ± 2 -3%
zendo3 33 ± 2 31 ± 1 -6%
zendo4 24 ± 3 24 ± 3 0%

imdb1 1 ± 0 1 ± 0 0%
imdb2 2 ± 0.1 2 ± 0 0%
imdb3 366 ± 23 287 ± 17 -21%

krk 48 ± 6 9 ± 0.6 -81%

rps 37 ± 1 6 ± 0.2 -83%
centipede 47 ± 2 9 ± 0.2 -80%
md 142 ± 7 13 ± 0.4 -90%
buttons 686 ± 109 25 ± 1 -96%
attrition 410 ± 20 57 ± 2 -86%
coins 496 ± 19 345 ± 18 -30%
buttons-goal 11 ± 0.2 5 ± 0.1 -54%
coins-goal 122 ± 6 76 ± 2 -37%

dropk 4 ± 0.3 3 ± 0.2 -25%
droplast 41 ± 3 23 ± 2 -43%
evens 33 ± 7 9 ± 1 -72%
finddup 51 ± 8 32 ± 4 -37%
last 4 ± 0.4 3 ± 0.2 -25%
len 31 ± 5 16 ± 2 -48%
sorted 74 ± 5 23 ± 1 -68%
sumlist 554 ± 122 320 ± 40 -42%

Table 2: Learning times in seconds.

▶ DISCO can drastically reduce learning
times.

4 - Experiment 2

Q2 What effect does BK constraint discovery
have on learning times given larger hypoth-
esis spaces?

Task Size POPPER DISCO Change

md 5 12 ± 0.9 3 ± 0.3 -75%
md 6 113 ± 2 10 ± 0.1 -91%
md 7 864 ± 156 23 ± 0.9 -97%
md 8 timeout 47 ± 2 -96%
md 9 timeout 48 ± 3 -96%
md 10 timeout 52 ± 0.1 -95%

Table 3: Learning times (seconds) when progres-
sively increasing the maximum rule size and thus the
hypothesis space.

▶ DISCO can drastically reduce learning
time as the hypothesis space grows rel-
ative to POPPER, by up to 97%.

5 - Experiment 3

Q3 How long does our BK constraint discovery
approach take given larger BK?
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Fig. 2: BK constraint discovery time (seconds) when
increasing the number of background facts.

▶ DISCO scales linearly in the size of the BK
and can scale to millions of facts.

6 - Conclusion

▶ Bias discovery approach to improve
learning performance

▶ Our approach can substantially reduce
learning times.

▶ Our approach can scale to BK with mil-
lions of facts.

Future work and Limitations:

▶ BK with an infinite grounding

▶ relax the closed-world assumption [4]

▶ more general properties and constraints
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