
Learning Logic Programs by 
Combining Programs

Andrew Cropper, Céline Hocquette
University of Oxford



Program Synthesis



Program Synthesis

Examples
(positive or 
negative)



Program Synthesis

Examples
(positive or 
negative)

Background 
Knowledge



Program Synthesis

Examples
(positive or 
negative)

Background 
Knowledge

Learner



Program Synthesis

Examples
(positive or 
negative)

Background 
Knowledge

Hypothesis
(a logic program)Learner



Positive



Positive

Negative



Positive examples Negative examples

win(b1,x).
win(b2,o).
win(b3,o).

win(b4,x).
Positive

Negative

b1 b2 b3

b4



Positive examples Negative examples

win(b1,x).
win(b2,o).
win(b3,o).

win(b4,x).

Background Knowledge

cell(b1,0,x).
cell(b1,1,x).
cell(b1,2,x).
…
cell(b2,0,x).
…

cell(b3,0,o).

Positive

Negative

b1 b2 b3

b4



Hypothesis

win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), cell(Board,2,Player) 
win(Board,Player) ← cell(Board,0,Player), cell(Board,3,Player), cell(Board,6,Player) 
win(Board,Player) ← cell(Board,0,Player), cell(Board,4,Player), cell(Board,8,Player) 

NegativePositive



Challenge

Very large hypothesis spaces



Challenge

Very large hypothesis spaces

Noughts and Crosses: 
- 109 hypotheses with 3 rules
- 1020 hypotheses with 9 rules



Challenge

Difficult to learn programs with many rules



Our contribution: a program synthesis approach which learns 
programs with many rules



Motivation

win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), cell(Board,2,Player) 
win(Board,Player) ← cell(Board,0,Player), cell(Board,3,Player), cell(Board,6,Player) 
win(Board,Player) ← cell(Board,0,Player), cell(Board,4,Player), cell(Board,8,Player) 



Motivation

r1, r2, and r3 do not depend on each other

r1: win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), cell(Board,2,Player) 

r2: win(Board,Player) ← cell(Board,0,Player), cell(Board,3,Player), cell(Board,6,Player) 

r3: win(Board,Player) ← cell(Board,0,Player), cell(Board,4,Player), cell(Board,8,Player) 



Idea

Learn small programs that cover some of the positive examples



Idea

Learn small programs that cover some of the positive examples

Combine these programs to learn large programs with many rules and literals



Our approach



Our approach



Our approach



win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), cell(Board,2,Player) 

win(Board,Player) ← cell(Board,0,Player), cell(Board,3,Player), cell(Board,6,Player) 

win(Board,Player) ← cell(Board,0,Player), cell(Board,4,Player), cell(Board,8,Player) 



Separable program

win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), cell(Board,2,Player) 

win(Board,Player) ← cell(Board,0,Player), cell(Board,3,Player), cell(Board,6,Player) 

win(Board,Player) ← cell(Board,0,Player), cell(Board,4,Player), cell(Board,8,Player) 



line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)



Non-separable program

line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)



Why should it help?



Searching over non-separable programs only can vastly reduce 
the hypothesis space.

Why should it help?



Searching over non-separable programs only can vastly reduce 
the hypothesis space.

Why should it help?

separable non-separable

mk m

m rules in the hypothesis space, 
at most k rules in a program



Combine stage

We search for a combination (a union) of programs that covers as many 
positive examples as possible, and is minimal in size.



Combine stage

r1: win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), cell(Board,2,Player) 

r2: win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), cell(Board,5,Player) 

r3: win(Board,Player) ← cell(Board,0,Player), cell(Board,3,Player), cell(Board,6,Player) 

r4: win(Board,Player) ← cell(Board,0,Player), cell(Board,4,Player), cell(Board,8,Player) 

r5: win(Board,Player) ← cell(Board,0,o), cell(Board,1,x), cell(Board,8,Player) 

r6: win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), next(Player,Player1), cell(Board,5,Player) 

r7: win(Board,Player) ← cell(Board,8,Player), next(Player,Player1), cell(Board,6,Player1), cell(Board,7,Player1) 

r8: win(Board,Player) ← cell(Board,4,Player), next(Player,Player1), cell(Board,1,Player1), cell(A,2,o)

r9: win(Board,Player) ← cell(Board,0,o), next(Board,1,Player), next(Player,Player1), cell(Board,7,Player1), cell(Board,8,Player1) 

…



Combine stage
r1: win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), cell(Board,2,Player) 

r2: win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), cell(Board,5,Player) 

r3: win(Board,Player) ← cell(Board,0,Player), cell(Board,3,Player), cell(Board,6,Player) 

r4: win(Board,Player) ← cell(Board,0,Player), cell(Board,4,Player), cell(Board,8,Player) 

r5: win(Board,Player) ← cell(Board,0,o), cell(Board,1,x), cell(Board,8,Player) 

r6: win(Board,Player) ← cell(Board,0,Player), cell(Board,1,Player), next(Player,Player1), cell(Board,5,Player) 

r7: win(Board,Player) ← cell(Board,8,Player), next(Player,Player1), cell(Board,6,Player1), cell(Board,7,Player1) 

r8: win(Board,Player) ← cell(Board,4,Player), next(Player,Player1), cell(Board,1,Player1), cell(A,2,o)

r9: win(Board,Player) ← cell(Board,0,o), next(Board,1,Player), next(Player,Player1), cell(Board,7,Player1), cell(Board,8,Player1) 

…



Implementation

We implement our approach in Combo.



Implementation

We implement our approach in Combo.

Theorem: Combo always returns an optimal (minimal size) solution if one 
exists.



Does it work?

Q1. Can combining non-separable programs improve predictive accuracies 
and learning times?

Q2. How does COMBO compare against other approaches?



Game playing



Game playing

Learning times (s) with a timeout of 60 minutes



Game playing

Learning times (s) with a timeout of 60 minutes Predictive accuracies



Buttons
next(A,B):- p(B), c(C), does(A,D,C), true(A,B), input(D,C).
next(A,B):- input(C,E), p(D), true(A,D), b(E), does(A,C,E), q(B).
next(A,B):- input(C,D), not_true(A,B), does(A,C,D), p(B), a(D).
next(A,B):- a(C), does(A,D,C), true(A,B), q(B), input(D,C).
next(A,B):- input(C,E), p(B), true(A,D), b(E), does(A,C,E), q(D).
next(A,B):- c(D), true(A,C), r(B), role(E), does(A,E,D), q(C).
next(A,B):- true(A,C), my_succ(C,B).
next(A,B):- input(C,D), does(A,C,D), true(A,B), r(B), b(D).
next(A,B):- input(C,D), does(A,C,D), true(A,B), r(B), a(D).
next(A,B):- true(A,E), c(C), does(A,D,C), q(B), r(E), input(D,C).



Graph problems

Learning times (s) with a timeout of 60 minutes Predictive accuracies



Conclusion
- Approach which learning small non-separable programs that cover 

some of the examples and then combines these programs to learn 
large programs.

- Our approach can drastically improve learning performance.



Limitations

● Learn programs from noisy examples by finding combinations that cover 
as many positive examples and as few negative examples as possible



References

■ Muggleton, S. ‘Inductive logic programming’, New Generation Computing, 8(4), 295–318, (1991).

■ Cropper, A. and Dumancic, S., ‘Inductive logic programming at 30: A new introduction’, J. Artif. Intell. Res., 74, 765–850, (2022).

■ Cropper, A., Morel, R.: Learning programs by learning from failures. Machine Learning 110(4), 801–856 (2021).

■ Cropper, A.: Learning logic programs through divide, constrain, and conquer. AAAI 2022.

■ Srinivasan, A.: The ALEPH manual. Machine Learning at the Computing Laboratory (2001).

■ Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. ‘Clingo = ASP + control: Preliminary report’, CoRR, (2014).



Tasks


