
Efficient synthesis of logic programs
through problem decomposition

Céline Hocquette
University of Oxford / Southampton

Positive structures Negative structures

There must be a red piece in contact with a square piece

Positive structures Negative structures

Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

Color in green pixels in between two blue pixels

Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

?

Color in green pixels in between two blue pixels

input output

Abstraction and Reasoning Corpus (ARC) [Chollet, 2019]

input output

input output

Inductive Logic Programming

Inductive Logic Programming

a form of program synthesis based on logic

Examples
(positive or
negative)

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Learner
(ILP system)

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Hypothesis / programLearner
(ILP system)

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Hypothesis / programLearner
(ILP system)

Inductive Logic Programming

a logic program

a logic program

a logic program

Positive examples Negative examples

zendo(ex1).
zendo(ex2).

zendo(ex3).
zendo(ex4).

Background Knowledge

piece(ex1, p1).
piece(ex1, p2).
piece(ex1, p3).
piece(ex1, p4).
blue(p1).
triangle(p1).
size(p1, 2).
small(2).
red(p2).
circle(p2).
triangle(p4).
contact(p2, p3).
on(p2, p3).
right(p4, p3).
left(p1, p2).
…

ex1

ex4

ex3

ex2

Program

zendo(Structure) ←
 piece(Structure,Piece1),
 red(Piece1),
 contact(Piece1,Piece2),
 square(Piece2).

Program

out(X,Y,C) ← in(X,Y,C).

out(X,Y,green) ← in(X1,Y,blue), in(X2,Y,blue), X1<X<X2.

out(X,Y,green) ← in(X,Y1,blue), in(X,Y2,blue), Y1<Y<Y2.

input output

Why ILP?

Why ILP?

● high generalisation ability
input output

out(X,Y,Color) ← in(X,Y,Color).

?

Why ILP?

● high generalisation ability
● learn from small amount of data

Why ILP?

● high generalisation ability
● learn from small amount of data
● learn from highly relational data

Why ILP?

● high generalisation ability
● learn from small amount of data
● learn from highly relational data
● learn explainable programs

Why ILP?

● high generalisation ability
● learn from small amount of data
● learn from highly relational data
● learn explainable programs
● reason about programs

Main challenge

Main challenge

hypothesis space = the set of all programs which may be learned by the learner

Large hypothesis spaces!

Main challenge

Large hypothesis spaces!

Zendo: 108 hypotheses with 1 rule and at most 6 variables and at most 6 literals

hypothesis space = the set of all programs which may be learned by the learner

In this presentation: problem decomposition

1. Combining rules to learn programs with many rules

2. Joining rules to learn programs with big rules

3. Example decomposition

win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)
win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)
win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)
win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

1 - Combining rules to learn programs with many rules

Learning logic programs by combing programs, Andrew Cropper and Céline Hocquette, ECAI, 2023

r1, r2, r3 and r4 do not depend on each other

r1: win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)

r2: win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)

r3: win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)

r4: win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

1 - Combining rules to learn programs with many rules

Idea

Learn small programs that entail some of the positive examples

Reason about the coverage of programs to find a combination of programs
that entails many positive examples

Our approach

Our approach

solved using a constraint optimisation approach

Combine stage
Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6

Input:

Combine stage

Output:
{p1,p3,p5} covers {e1,e2,e3,e5,e6,e7,e8,e9} and has size 12

Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6

Input:

Our approach

Our approach

win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)

win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)

win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)

win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

Separable program

win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)

win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)

win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)

win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)

Non-separable program

line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)

How well does it work?

With
combine

Without
combine

Learning times (s) with a timeout of 60 minutes
Predictive accuracies (%)

With
combine

Without
combine

Why does it work?

● We decompose a learning task into smaller tasks that can be
solved separately

Why does it work?

● We decompose a learning task into smaller tasks that can be
solved separately

● Searching over non-separable programs only can vastly reduce
the hypothesis space.

separable non-separable

mk m

m rules in the hypothesis space,
at most k rules in a program

2 - Joining rules to learn programs with big rules

Learning big logical rules by joining small rules, Céline Hocquette, Andreas Niskanen, Rolf Morel, Matti Järvisalo, and
Andrew Cropper, IJCAI, 2024.

zendo(Structure) ←

piece(Structure,Piece1),blue(Piece1),

piece(Structure,Piece2),red(Piece2),

piece(Structure,Piece3),yellow(Piece3).

Idea

Learn small rules that entail some positive and some negative examples

zendo1(Structure) ← piece(Structure,Piece1),blue(Piece1).

zendo2(Structure) ← piece(Structure,Piece2),red(Piece2).

zendo3(Structure) ← piece(Structure,Piece3),yellow(Piece3).

Idea

Learn small rules that entail some positive and some negative examples

zendo1(Structure) ← piece(Structure,Piece1),blue(Piece1).

zendo2(Structure) ← piece(Structure,Piece2),red(Piece2).

zendo3(Structure) ← piece(Structure,Piece3),yellow(Piece3).

Reason about the coverage of programs to find conjunctions that entail some
positive examples and no negative examples

zendo(Structure) ← zendo1(Structure),zendo2(Structure),zendo3(Structure).

Our approach

Join stage
Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n1,n2} 5

Input:

Join stage

Output:
c1={p3,p4,p5} covers {e1,e2} and has size 13

Input: Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n2,n3} 5

Join stage

Output:
c1={p3,p4,p5} covers {e1,e2} and has size 13
c2={p1,p3} covers {e1} and has size 5

Input: Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n1,n2} 5

Join stage

Output:
c1={p3,p4,p5} covers {e1,e2} and has size 13
c2={p1,p3} covers {e1} and has size 5
c3={p2,p3} covers {e2} and has size 5

Input: Program Positive examples covered Negative examples covered Size

p1 {e1} {n3} 2

p2 {e2} {n3} 2

p3 {e1,e2} {n1,n2} 3

p4 {e1,e2} {n1,n3} 5

p5 {e1,e2} {n1,n2} 5

solved using a constraint satisfaction approach

zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

Splittable program

Head variable body-only variable

zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)

zendo(Structure) ← piece(Structure,Piece1), blue(Piece1), triangle(Piece1),

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)

Non-splittable program

How well does it work?

Without join stage

W
ith

 jo
in

 s
ta

ge

Predictive accuracies (%)

Why does it work?

● We decompose a learning task into smaller tasks that can be
solved separately

● Searching over non-splittable programs only can vastly reduce
the hypothesis space.

3 - Example decomposition

Input Output

[l, i, o, n] [l, a, i, o, n]

[t, i, g, e, r] [t, a, i, g, e, r]

Insert the letter a at position 2

Relational decomposition for program synthesis, Céline Hocquette, and Andrew Cropper, under review at AAAI.

3 - Example decomposition

Input Output

[l, i, o, n] [l, a, i, o, n]

[t, i, g, e, r] [t, a, i, g, e, r]

def f(xs):
 return cons(head(xs),cons('a',tail(xs))

Insert the letter a at position 2

Relational decomposition for program synthesis, Céline Hocquette, and Andrew Cropper, under review at AAAI.

3 - Example decomposition

Input Output

[l, i, o, n] [l, i, a, o, n]

[t, i, g, e, r] [t, i, a, g, e, r]

def f(xs):
 return cons(head(xs),cons(head(tail(xs)),cons('a',tail(tail(xs)))))

Insert the letter a at position 3

3 - Example decomposition

Input Output

[l, i, o, n] [l, a, i, o, n]

[t, i, g, e, r] [t, a, i, g, e, r]

Insert the letter a at position 2

in(1,l).
in(2,i).
in(3,o).
in(4,n).

out(1,l).
out(2,a).
out(3,i).
out(4,o).
out(5,n).

3 - Example decomposition

Input Output

[l, i, o, n] [l, a, i, o, n]

[t, i, g, e, r] [t, a, i, g, e, r]

Insert the letter a at position 2

out(I,V) ← I<2, in(I,V).
out(2,a).
out(I,V) ← I>2, in(I-1,V).

3 - Example decomposition
Insert the letter a at position 3
Input Output

[l, i, o, n] [l, i, a, o, n]

[t, i, g, e, r] [t, i, a, g, e, r]

3 - Example decomposition

Input Output

[l, i, o, n] [l, i, a, o, n]

[t, i, g, e, r] [t, i, a, g, e, r]

Insert the letter a at position 3

out(I,V) ← I<3, in(I,V).
out(3,a).
out(I,V) ← I>3, in(I-1,V).

input output

Relational decomposition for program synthesis, Céline Hocquette, and Andrew Cropper, under review at AAAI.

input output

out(X,Y,C) ← in(X,Y,C).
out(X,Y,yellow) ← empty(X,Y), height(X).
out(X,Y,red) ← empty(X,Y), height(X+Y-1).

Relational decomposition for program synthesis, Céline Hocquette, and Andrew Cropper, under review at AAAI.

input output

out(X,Y,C) ← in(X,Y,C).
out(X,Y,red) ← empty(X,Y), in(X1,Y,C), in(X,Y1,C).

How well does it work?

Why does it work?

● Decomposes a synthesis task into smaller ones by decomposing
each training example into multiple examples

Why does it work?

● Decomposes a synthesis task into smaller ones by decomposing
each training example into multiple examples

● Learn relations between elements / pixels

What is missing?

● More core primitives (we used only basic arithmetic relations).

● Better search

Conclusion

Decomposing a synthesis task into smaller ones can improve
learning performance

Open-source ILP system Popper

https://github.com/logic-and-learning-lab/Popper

Interested?

Thank you! Questions?

celinehocquette@gmail.com

