How much can experimental cost be reduced in active learning of agent strategies?

Imperial College London

Céline Hocquette & Stephen H. Muggleton

Learning agent strategies from observations

Experimentation requires energy, time and resources

Automated experimentation with active learning

Learning agent strategies from observations

Related work

	Size of the hypothesis space considered	Active Learning	Target hypotheses learned
Robot Scientist (King et al, 2004)	Finite (15)	yes	Abductive bindings
MetaBayes (Muggleton et al, 2014)	infinite	no	logic programs
Efficiently Learning Efficient Programs (Cropper, 2017)	Reduced with Abstractions	no	strategies
Bayesian Active MIL (2018)	infinite	yes	strategies

Related work

- Active Learning
 - Widely studied for identifying classifiers
 - Other applications, among them Object Detection in Computer Vision (Roy et al., 2016), Natural Language Processing (Thompson et al., 1999)

Relational Reinforcement Learning

Framework

Meta-Interpretive Learning

Bayesian prior probability distribution over the hypothesis space

Active Learning

ent(e) = p log(p) + (1-p)log(1-p)

Framework

Implementation

Regular Sampling (MetaBayes, 2014)

Entropy of the instances measured from the sampled set of hypotheses

Theoretical Analysis

What is the probability of selecting an instance ε -close to the entropy maximum?

 Active learner: selects the instance with maximum entropy among a set of N sampled instances

$$P_{\text{active}} (p_i < p_{\epsilon}) = (1 - \epsilon)^N \qquad P_{\text{active}} (p_{\epsilon} \le p_i) = N \epsilon - o(\epsilon)$$

Probability distribution

Passive learner: random selection

 $P_{passive} (p_{\epsilon} \le p_i) = \epsilon$

Results: Learning a Regular Grammar

Results: Learning a Bee Strategy

Conclusion

 Automated experimentation with active learning for learning efficient strategies while making efficient use of experimental materials

Wide range of applications such as modelling butterfly behaviors

Future work: learning probabilistic models

Generation of SLP by Super-Imposition

Model scoring: sum of log posterior probabilities

$$Score(M) = \sum_{e \text{ in Test Set}} \log(P(M|e)) = \sum_{e \text{ in Test Set}} \log(P(e|M)) + \log(P(M)) - \log(P(e))$$

Future work: multi-agents

 Learning a strategy for describing the behavior of an agent adapting in an evolving environment

Applications: 2 player games

Thank you

celine.hocquette16@imperial.ac.uk s.muggleton@imperial.ac.uk

References

- A. Cropper. <u>Efficiently learning efficient programs</u>. PhD thesis, Imperial College London, 2017.
- R.D. King, K.E. Whelan, F.M. Jones, P.K.G. Reiser, C.H. Bryant, S.H. Muggleton, D.B. Kell, and S.G. Oliver. <u>Functional genomic hypothesis generation</u> and experimentation by a robot scientist. *Nature*, 427:247-252, 2004.
- S.H. Muggleton, D. Lin, J. Chen, and A. Tamaddoni-Nezhad. <u>Metabayes: Bayesian meta-interpretative learning using higher-order stochastic</u> <u>refinement</u>. In Gerson Zaverucha, Vitor Santos Costa, and Aline Marins Paes, editors, *Proceedings of the 23rd International Conference on Inductive Logic Programming (ILP 2013)*, pages 1-17, Berlin, 2014. Springer-Verlag. LNAI 8812.
- Roy, S., Namboodiri, V.P.n Biswas, A., <u>Active learning with version spaces for object detection</u>, ArXiv e-prints, 2016
- Thompson, C. A., Califf, M. E., Mooney, R. J., <u>Active Learning for Natural Language Parsing and Information Extraction</u>, in Proceedings of the 16th International Conference on Machine Learning, ICML 1999, Morgan Kaufmann Publishers Inc.