
Learning Logic Programs by Combining Programs
Andrew Cropper and Céline Hocquette

University of Oxford
andrew.cropper@cs.ox.ac.uk; celine.hocquette@cs.ox.ac.uk

1 - Introduction

The goal of inductive logic programming (ILP)
is to induce a program (a set of logical rules)
that generalises training examples.

Problem: learning large programs is diffi-
cult.

Example 1 (Game rules)

win(A,X)← cell(A,0,X), cell(A,1,X), cell(A,2,X)
win(A,X)← cell(A,0,X), cell(A,3,X), cell(A,6,X)
win(A,X)← cell(A,0,X), cell(A,4,X), cell(A,8,X)

Example 2 (Program synthesis). Given the ex-
amples:

E+ = {contains(ecai),
contains(logic),
contains(inductive),
contains(research),
contains(program),
contains(synthesis)}

E− = {contains(combo),
contains(oxford)}

We might want to learn a program which holds
if the input string contains the letter ’a’, ’e’, or ’i’:

contains(A)← head(A,a)
contains(A)← head(A,e)
contains(A)← head(A,i)
contains(A)← tail(A,B), contains(B)

Example 3 (Drug design)

pharma(A)← zincsite(A,B),
hydrogen_acc(A,C),
single_bond(B,C)
hydrophobic(C)

pharma(A)← zincsite(A,B),
hydrogen_donor(A,C),
double_bond(B,C)
distance(B,C,D)
leq(D, 2.6)

2 - Our approach (COMBO)
Key idea: learn small non-separable programs independently and then try to combine them.

generate a 
non-separable 

program h

if h covers at least one 
positive example and 
no negative example

if h is not solution

combine stage

test h over the 
examples

constrain the 
search

if h is solution, output h

We use answer set programming to search 
for a combination (a union) of programs 
that covers as many positive examples as 
possible, and is minimal in size.

A program h is separable when (i) it has at least two rules, and (ii) no predicate symbol in the head
of a rule in h also appears in the body of a rule in h. This program is separable:

happy(A)← rich(A)
happy(A)← friend(A,B), famous(B)
happy(A)← married(A,B), beautiful(B)


A program is non-separable when it is not separable. This program is non-separable:{

happy(A)← rich(A)
happy(A)← married(A,B), happy(B)

}
Why does it work? The union of the logical consequences of each rule is equivalent to the conse-
quences of the whole program.

Why does it help? Searching over non-separable programs only can vastly reduce the hypothesis
space.

3 - Experiment

Q1 Can combining non-separable programs improve learning times?
Q2 How does COMBO compare against other approaches?

Task COMBO POPPER DCC ALEPH

trains1 4 ± 0 5 ± 0 8 ± 1 3 ± 1
trains2 4 ± 0 82 ± 25 10 ± 1 2 ± 0
trains3 18 ± 1 timeout timeout 13 ± 3
trains4 16 ± 1 timeout timeout 136 ± 55

zendo1 3 ± 1 7 ± 1 7 ± 1 1 ± 0
zendo2 49 ± 5 timeout 3256 ± 345 1 ± 0
zendo3 55 ± 6 timeout timeout 1 ± 0
zendo4 53 ± 11 3243 ± 359 2939 ± 444 1 ± 0

imdb1 2 ± 0 3 ± 0 3 ± 0 142 ± 41
imdb2 3 ± 0 11 ± 1 3 ± 0 timeout
imdb3 547 ± 46 875 ± 166 910 ± 320 timeout

krk1 28 ± 6 1358 ± 321 188 ± 53 3 ± 1
krk2 3459 ± 141 timeout timeout 11 ± 4
krk3 timeout timeout timeout 16 ± 3

md 13 ± 1 3357 ± 196 timeout 4 ± 0
buttons 23 ± 3 timeout timeout 99 ± 0
rps 87 ± 15 timeout timeout 20 ± 0
coins 490 ± 35 timeout timeout timeout
buttons-g 3 ± 0 timeout timeout 86 ± 0
coins-g 105 ± 6 timeout timeout 9 ± 0
attrition 26 ± 1 timeout timeout 678 ± 25
centipede 9 ± 0 1102 ± 136 2104 ± 501 12 ± 0

Task COMBO POPPER DCC ALEPH

adj_red 2 ± 0 5 ± 0 6 ± 0 479 ± 349
connected 5 ± 1 112 ± 71 735 ± 478 435 ± 353
cyclic 35 ± 13 1321 ± 525 1192 ± 456 1120 ± 541
colouring 2 ± 0 6 ± 0 5 ± 0 2373 ± 518
undirected 2 ± 0 6 ± 0 6 ± 0 227 ± 109
2children 2 ± 0 7 ± 0 6 ± 0 986 ± 405

dropk 7 ± 3 17 ± 2 14 ± 2 4 ± 1
droplast 3 ± 0 372 ± 359 13 ± 1 763 ± 67
evens 3 ± 0 29 ± 3 25 ± 2 2 ± 0
finddup 11 ± 5 136 ± 14 149 ± 7 0.8 ± 0
last 2 ± 0 12 ± 1 11 ± 1 2 ± 0
contains 17 ± 0 299 ± 52 158 ± 48 64 ± 5
len 3 ± 0 52 ± 5 45 ± 2 2 ± 0
reverse 40 ± 5 1961 ± 401 1924 ± 300 3 ± 0
sorted 127 ± 78 111 ± 11 131 ± 10 1 ± 0
sumlist 4 ± 0 256 ± 27 221 ± 12 0 ± 0

Table 1: Learning times (s) with a 60 minutes time-
out.

▶ Learning non-separable programs and combining them can drastically improve learning
performance.

4 - Limitation

▶ Learning programs from noisy examples by finding combinations that cover as many positive examples and as few negative
examples as possible.

Article


