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Positive examples Negative examples



There must be a red piece in contact with a small piece



Positive examples Negative examples

zendo(ex1).
zendo(ex2).

zendo(ex3).
zendo(ex4).

Background Knowledge

piece(ex1, p1).
piece(ex1, p2).
piece(ex1, p3).
piece(ex1, p4).
blue(p1).
triangle(p1).
size(p1, 2).
small(2).
red(p2).
round(p2).
triangle(p4).
contact(p2, p3).
on(p2, p3).
right(p4, p3).
left(p1, p2).
…

ex1

ex4

ex3

ex2



Hypothesis

zendo(Structure):- 
    piece(Structure,Piece1),
    red(Piece1),
    contact(Piece1,Piece2),
    size(Piece2,Size),
    small(Size).
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Why care about ILP?

● Learn from small amount of data

● Learn explainable models

● Learn from relational data

● ILP can be applied to many problems
○ robot scientist, biology, learning game strategies



Popper: an inductive logic programming system

Learning logic programs by combing programs, Andrew Cropper and Céline Hocquette, ECAI, 2023.
Learning MDL logic programs from noisy data, Céline Hocquette, Andreas Niskanen, Matti Järvisalo, and Andrew Cropper, AAAI, 2024.

In this presentation
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Why care?
● Popper formulates the ILP problem as a CP problem

● Challenges for the CP community to address limitations

● Benchmarks tasks for the CP community

● Accessible way to bridge CP and ML
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How does Popper work?

Learning programs by combining programs, Andrew Cropper and Céline Hocquette, ECAI, 2023.
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Input:
- a set of literals L
- a set of constraints C

Output: a set of literals L’⊂L such that:
- L’ is consistent with C
- L’ is minimal in size

Generate stage



Input:
{piece(A,B),red(B),blue(B),small(B),red(C),blue(C),small(C),red(D), 
blue(D),small(D),contact(B,C),contact(C,B),contact(B,D), 
contact(D,B),contact(C,D),contact(D,C)}
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Input:
{piece(A,B),red(B),blue(B),small(B),red(C),blue(C),small(C),red(D), 
blue(D),small(D),contact(B,C),contact(C,B),contact(B,D), 
contact(D,B),contact(C,D),contact(D,C)}

Output:
{piece(A,B),red(B)}
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Input:
{piece(A,B),red(B),blue(B),small(B),red(C),blue(C),small(C),red(D), 
blue(D),small(D),contact(B,C),contact(C,B),contact(B,D), 
contact(D,B),contact(C,D),contact(D,C)}

Output:
{piece(A,B),red(B)}

zendo(A) ← piece(A,B),red(B)

Generate stage
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- easy for us
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We currently use ASP
- easy for us
- easy to express recursive concepts (connectedness)
- incremental solving

Generate stage
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Input: 
- a set of programs P, with their size and coverage, such that for all p∈P:

- p covers at least one positive example
- p does not cover any negative example

Output: a set of programs P’⊂P such that:
- P’ covers as many positive examples as possible
- P’ is minimal in size

Combine stage



Input: 

Combine stage
Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6



Input: 

Combine stage
Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6

Output:
{p1,p3,p5} covers {e1,e2,e3,e5,e6,e7,e8,e9} and has size 12
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We used ASP and switched to MaxSAT

We can support noise

Combine stage

Learning MDL logic programs from noisy data, Céline Hocquette, Andreas Niskanen, Matti Järvisalo, and Andrew Cropper, AAAI, 2024.

Thursday 22nd, 2:00-3:15
Knowledge Representation
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Why not one big SAT/ASP problem?

● Infinite domains, function symbols (lists), numerical reasoning

● The problem quickly becomes infeasible 



Conclusion

- Popper, an ILP algorithm which uses CP
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Limitations: generate stage

● The generate stage can be prohibitively slow and it prevents us to use 
Popper on some tasks

Can our ASP encoding be improved?
Would a different CP approach be more suitable? 
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Limitations: combine stage

● We use UWRMaxSAT. Can your solver / encoding do better?
○ Currently single-threaded
○ Currently non-incremental 
○ Struggles with weights



Benchmarks

We have hard and large (1gb+) instances if you want to try!



Thank you!

https://github.com/logic-and-learning-lab/Popper

celine.hocquette@cs.ox.ac.uk
andrew.cropper@cs.ox.ac.uk 
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