
Constraint programming for
inductive logic programming

Andrew Cropper, Céline Hocquette
University of Oxford

Inductive Logic Programming (ILP)

Inductive Logic Programming

Examples
(positive or
negative)

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Learner
(ILP system)

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Hypothesis / programLearner
(ILP system)

Inductive Logic Programming

Examples
(positive or
negative)

Background
Knowledge

Hypothesis / programLearner
(ILP system)

Inductive Logic Programming

a logic program

a logic program

a logic program

Positive examples Negative examples

There must be a red piece in contact with a small piece

Positive examples Negative examples

zendo(ex1).
zendo(ex2).

zendo(ex3).
zendo(ex4).

Background Knowledge

piece(ex1, p1).
piece(ex1, p2).
piece(ex1, p3).
piece(ex1, p4).
blue(p1).
triangle(p1).
size(p1, 2).
small(2).
red(p2).
round(p2).
triangle(p4).
contact(p2, p3).
on(p2, p3).
right(p4, p3).
left(p1, p2).
…

ex1

ex4

ex3

ex2

Hypothesis

zendo(Structure):-
 piece(Structure,Piece1),
 red(Piece1),
 contact(Piece1,Piece2),
 size(Piece2,Size),
 small(Size).

Why care about ILP?

Why care about ILP?

● Learn from small amount of data

Why care about ILP?

● Learn from small amount of data

● Learn explainable models

Why care about ILP?

● Learn from small amount of data

● Learn explainable models

● Learn from relational data

Why care about ILP?

● Learn from small amount of data

● Learn explainable models

● Learn from relational data

● ILP can be applied to many problems
○ robot scientist, biology, learning game strategies

Popper: an inductive logic programming system

Learning logic programs by combing programs, Andrew Cropper and Céline Hocquette, ECAI, 2023.
Learning MDL logic programs from noisy data, Céline Hocquette, Andreas Niskanen, Matti Järvisalo, and Andrew Cropper, AAAI, 2024.

In this presentation

Why care?

Why care?
● Popper formulates the ILP problem as a CP problem

Why care?
● Popper formulates the ILP problem as a CP problem

● Challenges for the CP community to address limitations

Why care?
● Popper formulates the ILP problem as a CP problem

● Challenges for the CP community to address limitations

● Benchmarks tasks for the CP community

Why care?
● Popper formulates the ILP problem as a CP problem

● Challenges for the CP community to address limitations

● Benchmarks tasks for the CP community

● Accessible way to bridge CP and ML

How does Popper work?

How does Popper work?

How does Popper work?

How does Popper work?

How does Popper work?

How does Popper work?

How does Popper work?

Learning programs by combining programs, Andrew Cropper and Céline Hocquette, ECAI, 2023.

Generate stage

Input:
- a set of literals L
- a set of constraints C

Generate stage

Input:
- a set of literals L
- a set of constraints C

Output: a set of literals L’⊂L such that:
- L’ is consistent with C
- L’ is minimal in size

Generate stage

Input:
{piece(A,B),red(B),blue(B),small(B),red(C),blue(C),small(C),red(D),
blue(D),small(D),contact(B,C),contact(C,B),contact(B,D),
contact(D,B),contact(C,D),contact(D,C)}

Generate stage

Input:
{piece(A,B),red(B),blue(B),small(B),red(C),blue(C),small(C),red(D),
blue(D),small(D),contact(B,C),contact(C,B),contact(B,D),
contact(D,B),contact(C,D),contact(D,C)}

Output:
{piece(A,B),red(B)}

Generate stage

Input:
{piece(A,B),red(B),blue(B),small(B),red(C),blue(C),small(C),red(D),
blue(D),small(D),contact(B,C),contact(C,B),contact(B,D),
contact(D,B),contact(C,D),contact(D,C)}

Output:
{piece(A,B),red(B)}

zendo(A) ← piece(A,B),red(B)

Generate stage

We currently use ASP

Generate stage

We currently use ASP
- easy for us

Generate stage

We currently use ASP
- easy for us
- easy to express recursive concepts (connectedness)

Generate stage

We currently use ASP
- easy for us
- easy to express recursive concepts (connectedness)
- incremental solving

Generate stage

Combine stage

Input:
- a set of programs P, with their size and coverage, such that for all p∈P:

- p covers at least one positive example
- p does not cover any negative example

Combine stage

Input:
- a set of programs P, with their size and coverage, such that for all p∈P:

- p covers at least one positive example
- p does not cover any negative example

Output: a set of programs P’⊂P such that:
- P’ covers as many positive examples as possible
- P’ is minimal in size

Combine stage

Input:

Combine stage
Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6

Input:

Combine stage
Program Positive examples covered Size

p1 {e1,e2,e3} 3

p2 {e9} 3

p3 {e1,e3,e5,e6,e7} 4

p4 {e2,e6,e7} 4

p5 {e2,e5,e8,e9} 5

p6 {e8,e9} 6

Output:
{p1,p3,p5} covers {e1,e2,e3,e5,e6,e7,e8,e9} and has size 12

We used ASP and switched to MaxSAT

Combine stage

We used ASP and switched to MaxSAT

We can support noise

Combine stage

Learning MDL logic programs from noisy data, Céline Hocquette, Andreas Niskanen, Matti Järvisalo, and Andrew Cropper, AAAI, 2024.

Thursday 22nd, 2:00-3:15
Knowledge Representation

Why not one big SAT/ASP problem?

Why not one big SAT/ASP problem?

● infinite domains, function symbols (lists), numerical reasoning

Why not one big SAT/ASP problem?

● Infinite domains, function symbols (lists), numerical reasoning

● The problem quickly becomes infeasible

Conclusion

- Popper, an ILP algorithm which uses CP

Limitations: generate stage

Limitations: generate stage

● The generate stage can be prohibitively slow and it prevents us to use
Popper on some tasks

Limitations: generate stage

● The generate stage can be prohibitively slow and it prevents us to use
Popper on some tasks

Can our ASP encoding be improved?

Limitations: generate stage

● The generate stage can be prohibitively slow and it prevents us to use
Popper on some tasks

Can our ASP encoding be improved?
Would a different CP approach be more suitable?

Limitations: combine stage

● We use UWRMaxSAT.

Limitations: combine stage

● We use UWRMaxSAT. Can your solver / encoding do better?

Limitations: combine stage

● We use UWRMaxSAT. Can your solver / encoding do better?
○ Currently single-threaded

Limitations: combine stage

● We use UWRMaxSAT. Can your solver / encoding do better?
○ Currently single-threaded
○ Currently non-incremental

Limitations: combine stage

● We use UWRMaxSAT. Can your solver / encoding do better?
○ Currently single-threaded
○ Currently non-incremental
○ Struggles with weights

Benchmarks

We have hard and large (1gb+) instances if you want to try!

Thank you!

https://github.com/logic-and-learning-lab/Popper

celine.hocquette@cs.ox.ac.uk
andrew.cropper@cs.ox.ac.uk

https://github.com/logic-and-learning-lab/Popper
mailto:celine.hocquette@cs.ox.ac.uk
mailto:andrew.cropper@cs.ox.ac.uk

